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Abstract

The analysis of the multiantenna capacity in the high-SNR regime has hitherto focused
on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative
increase as function of the number of antennas. This traditional characterization is unable
to assess the impact of prominent channel features since, for a majority of channels, the
slope equals the minimum of the number of transmit and receive antennas. Furthermore, a
characterization based solely on the slope captures only the scaling but it has no notion of
the power required for a certain capacity. This paper advocates a more refined characteriza-
tion whereby, as function of SNR|dB, the high-SNR capacity is expanded as an affine function
where the impact of channel features such as antenna correlation, unfaded components, etc,
resides in the zero-order term or power offset. The power offset, for which we find insightful
closed-form expressions, is shown to play a chief role for SNR levels of practical interest.
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I Introduction

A Motivation

The observation was first made in [1, 2] that, in the high-power regime, the single-user
multiantenna capacity with coherent reception behaves as

C(SNR) = min(nT, nR) log2 SNR + O(1) (1)

where nT and nR denote the number of transmit and receive antennas while SNR repre-
sents the signal-to-noise ratio. The linear scaling of the leading term with min(nT, nR)
(variously referred to as the high-SNR slope, the number of degrees of freedom [3], the maxi-
mum multiplexing gain or the pre-log) was instrumental in firmly establishing the potential
of multiantenna communication. Although the early analysis supporting (1) considered
a canonical channel having zero-mean IID (independent identically distributed) Gaus-
sian entries, it turns out that this behavior holds under rather general channel conditions
[4, 5].1

Some of the lessons that emerge from a traditional analysis of the coherent capacity at
high SNR based on (1) are:

• Only min(nT, nR) is relevant. Any increase in max(nT, nR) is immaterial.

• In order to retain the multiplexing gain in the presence of known antenna correlations,
it suffices to transmit nonzero power along every eigenvector outside the null space of
the correlation matrix of the transmit array.

• The impact of correlation depends exclusively on the rank of the transmit and receive
correlation matrices. Provided these matrices are nonsingular, as is usually the case in
practice, correlation has no effect.

• The capacity is not altered by the existence of Ricean (unfaded) channel components.

In order to illustrate why these conclusions are unwarranted, Fig. 1 depicts the ergodic
mutual information achieved by an isotropic Gaussian input on an IID Rayleigh-faded
channel and on a Rayleigh-faded channel exhibiting antenna correlation. Although both
channels have the same high-SNR slope, the power levels required to achieve a given mu-
tual information at high SNR may be over 10 dB apart.

1Coherent operation may be unfeasible for SNR → ∞ when the noise becomes commensurate with the
uncertainty in the knowledge of the precise state of the channel and the logarithmic scaling in (1) breaks
down [6, 7]. For SNR levels of practical interest, however, the premise of coherent reception is valid in a vast
majority of channels and an asymptotic characterization accurately captures the behavior of the capacity at
those SNR levels.
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Figure 1: For nT = nR = 4, mutual information achieved by an isotropic input in an
IID Rayleigh-faded channel and in a correlated Rayleigh-faded channel (cf. Example 3).
The solid lines indicate simulation while the dashed lines indicate the high-SNR expansion
with S∞ = 4 bits/s/Hz/(3 dB) and with the power offset obtained from Proposition 4.
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The objective of this paper is to show how each of the above statements is amended—in
some cases quite drastically—by a more refined analysis. To that end, we evaluate the
zero-order term in the high-SNR expansion of the capacity as an affine function of SNR|dB,
for which we coin the term power offset.2 As will be shown, in the high-SNR regime most
channels have the same slope yet their capacities may be very different because of sizeable
disparities in the power offset.

The paper is organized as follows. The remainder of this section introduces the basic
model and quantities to be utilized throughout. In Section II, the two fundamental high-
SNR performance measures, namely the slope and the power offset, are defined. As an
instructive exercise, in Section III these measures are evaluated for the canonical channel,
for which a number of prior analyses are available. Section IV, in turn, deals with more
general channels that incorporate antenna correlation. The analysis of the power offset on
these channels yields valuable insight—that could not be drawn from the slope—on the
impact of correlation and on the capacity-achieving input at high SNR. Finally, Sections V
and VI present results for other channels of interest: Ricean channels and interference-
limited channels. Various implications of the analysis, highlighted throughout the paper,
are brought together in Section VII. Moreover, the applicability of the results to high-SNR

levels of practical interest is discussed. Proofs are relegated to the appendices.

B Definitions and Notation

With frequency-flat fading,3 the baseband complex model we consider is

y =
√

g Hx + n (2)

where x and y are the input and output vectors while n is AWGN (additive white Gaus-
sian noise). The channel, both stationary and ergodic, is represented by the nR × nT ran-
dom matrix

√
g H where the entries of H are jointly Gaussian while the real-valued scalar

g is such that
E[Tr{HH†}] = nRnT. (3)

The receiver has access to the realization of H whereas the transmitter has only access to
its distribution. Therefore, temporally IID input vectors are optimum.

The spatial covariance of these input vectors, conveniently normalized by the energy per

2Notation: x|dB = 10 log10 x.
3If the fading process is frequency selective, the channel can be decomposed into a number of parallel

noninteracting subchannels, each sufficiently narrow to experience frequency-flat fading and with the same
ergodic capacity as the aggregate channel.
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dimension, is denoted by

Φ =
E[xx†]

1
nT

E[‖x‖2]
(4)

where the normalization ensures that Tr{Φ}=nT. With that, an isotropic input maps onto
Φ = I. The ergodic mutual information (average rate per unit bandwidth) achieved by a
zero-mean Gaussian input, in bits/s/Hz, is

I(SNR,Φ) = E
[
log2 det

(
I + SNR

nT
HΦH†

)]
(5)

with

SNR = g
E[‖x‖2]
1

nR
E[‖n‖2]

(6)

The maximization of (5) over Φ yields the ergodic capacity.

For notational compactness, we introduce specific symbols to indicate the smaller and
larger of the numbers of transmit and receive antennas:

n⇓ = min(nT, nR) (7)
n⇑ = max(nT, nR) (8)

II High-SNR Measures: S∞ and L∞
At high SNR, the ergodic mutual information achieved with input covariance Φ behaves
as

I(SNR,Φ) = S∞(Φ)

(
SNR|dB

3 dB
− L∞(Φ)

)
+ o(1) (9)

where 3 dB = 10 log10 2 while S∞(Φ) denotes the high-SNR slope in bits/s/Hz/(3 dB),

S∞(Φ) = lim
SNR→∞

I(SNR,Φ)

log2 SNR
. (10)

The quantity L∞(Φ), in turn, represents the zero-order term or power offset, in 3-dB units,
with respect to a reference channel having the same high-SNR slope but with unfaded and
orthogonal dimensions (i.e., such that 1

nT
HH†=I) whose expansion in (9) intersects the

origin at SNR|dB = 0. The power offset, which anchors the expansion, is given by

L∞(Φ) = lim
SNR→∞

(
log2 SNR − I(SNR,Φ)

S∞

)
(11)
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in 3-dB units.4 This performance measure was first introduced in [8], in the context of
CDMA with random spreading, where it was shown to be equivalent to the similarly
defined measure as function of the energy per information bit (instead of SNR).5

While L∞(Φ) can be computed for any input covariance Φ, we distinguish the power
offset for two particularly relevant inputs as follows:

• The power offset corresponding to the capacity-achieving input covariance is simply
indicated by L∞, obviating the dependence on Φ.

• The power offset corresponding to an isotropic input, whenever such input is not
capacity-achieving, is indicated by L∞◦ .

III The IID Rayleigh-faded Channel

The high-SNR behavior of a scalar Rayleigh-faded channel is well established. The slope is
S∞ = 1 bit/s/Hz/(3 dB) while the power offset in 3-dB units equals [8, 9]

L∞ = γ log2 e (12)

where γ is the Euler-Mascheroni constant

γ = lim
n→∞

(
n∑

`=1

1
`
− loge n

)
(13)

≈ 0.5772 (14)

Thus, L∞ amounts to about 2.5 dB in a scalar Rayleigh-faded channel. In a scalar unfaded
channel, in contrast, L∞ = 0. While the slope is unaffected by fading, the difference
between the corresponding power offsets reflects the cost of fading in terms of power.

The characterization extends straightforwardly to the canonical multiantenna channel
with IID Rayleigh-faded entries, for which the capacity-achieving input is isotropic and
the slope is S∞ = n⇓ [1].

4Replacing the basis of the binary log(·) in (11) and (5) with 10, we would obtain L∞(Φ) in units of Bels.
Further multiplication by 10 would yield dB. In fact, dB units are used to quantify the power offset in some
numerical examples, but all of the analytical expressions in the paper are given in 3-dB units.

5The zero-order counterpart of L∞ for channels unknown to the receiver is the fading number introduced
in [7]. In contrast to the coherent case that occupies us here, though, in the noncoherent case the leading
term in the high-SNR expansion is not necessarily linear in SNR|dB and, as a result, the interpretation of the
fading number does not mirror that of the power offset.
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Proposition 1 For an IID Rayleigh-faded channel,

L∞ = log2 nT +


γ −

n⇑−n⇓∑

`=1

1
`
− n⇑

n⇓

n⇑∑

`=n⇑−n⇓+1

1
`
+ 1


 log2 e (15)

which, for nT = nR = n, reduces to

L∞ = log2 n +

(
γ −

n∑

`=2

1
`

)
log2 e (16)

Proof: See Appendix B.

Example 1 Let nT = nR = 4. The high-SNR expansion in (9), with S∞ = 4 and with L∞
computed via Proposition 1, is plotted in Fig. 1 alongside a corresponding Montercarlo simulation
of I(SNR, I). The asymptotic behavior is evident at rather modest SNR levels.

The high-SNR expansion of the capacity obtained using the power offset expressions in
Proposition 1 had already been given by several authors, either as an approximation [10,
Eq. 10]–[11, Prop. 2] or a lower bound [12, Eq. 9]. (A distinct upper bound was given in
[13, Eq. 23].)

Proposition 2 Consider an IID channel whose entries are zero-mean and unit-variance but oth-
erwise arbitrarily distributed. As the number of antennas grows with ratio β = nT

nR
, the power

offset converges to

L∞ →





(β − 1) log2
β−1

β
+ log2 e β > 1

log2 e β = 1

1−β
β

log2(1− β) + log2(βe) β < 1

(17)

Proof: See Appendix C.

Note that, in contrast with Proposition 1, which is specific to Rayleigh fading, the validity
of Proposition 2 extends to any fading distribution [14].

Using Propositions 1 and 2, it is simple to unveil the role played by n⇑ on the canonical
channel. To this end, in the ensuing corollaries we writeL∞(nT, nR) explicitly highlighting
the dependence of the power offset on both nT and nR.

Corollary 1 Let nT = nR = n. Adding k receive antennas, while not altering S∞, would reduce
the power offset as

L∞(n, n + k) = L∞(n, n)−
(

n+k∑

`=n+1

1
`
+ k

n

n+k∑

`=k+1

1
`

)
log2 e (18)
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yielding a steady improvement with growing nR because of the additional power captured by every
new receive antenna. Once nR À nT, the gain approaches 3 dB for every doubling of nR.

Corollary 2 Let nT = nR = n. Adding k transmit antennas, while not altering S∞, would
reduce the power offset as

L∞(n + k, n) = L∞(n, n) + log2
n+k

n
−

(
n+k∑

`=n+1

1
`
+ k

n

n+k∑

`=k+1

1
`

)
log2 e (19)

This improvement cannot exceed 1.5 dB for k = 1 and 4.3 dB for any k.

Relationships (18) and (19) are illustrated in Fig. 2.

Example 2 With respect to nT = nR = 1,

L∞(1, 2) = L∞(1, 1)− 4.3 dB (20)
L∞(2, 1) = L∞(1, 1)− 1.3 dB (21)
L∞(∞, 1) = L∞(1, 1)− 2.5 dB (22)

Note that, as observed in [15], letting nT → ∞ with nR = 1 exactly erases the high-SNR power
penalty due to fading.

IV Correlated Rayleigh-faded Channels

Let us now extend the analysis to channels with transmit and receive correlations. We
adhere to the widely used separable model whereby the correlation between the (i,j) and
(k,`) entries of H is6

E
[
(H)i,j(H)∗k,`

]
= (ΘR)i,k(ΘT)j,`

where ΘR and ΘT are nR× nR and nT× nT correlation matrices whose entries indicate the
correlation between receive antennas and between transmit antennas, respectively, while
(·)i,j denotes the (i,j)th entry of a matrix. A Rayleigh-faded channel whose correlation is
separable can thus be expressed as

H = Θ
1/2
R WΘ

1/2
T (23)

with W having IID unit-variance Rayleigh-faded entries.

6For more general correlation structures, expressions for S∞ and L∞ in the large-dimensional limit
(nT, nR →∞) are given in [16].
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For the channel in (23), achieving capacity when the transmitter knows the distribution
but not the realization of H requires that signalling take place on the eigenspace of ΘT

[17]–[22]. We therefore consider only input covariances of the form Φ = VPV† where
V contains the eigenvectors of ΘT while P = diag{p1, p2, . . . , pnT

} where pj denotes the
power allocated to the jth such eigenvector.

We shall further make use of the following notion.

Definition 1 An input covariance Φ is deemed admissible to the channel model in (23) if the
null space of Φ is contained within the null space of ΘT.

Note that the identity is admissible to any channel that conforms to (23).

A The High-SNR Slope

Definition 2 The ranks of ΘT and ΘR are denoted, respectively, by n′T and n′R.

In terms of the high-SNR slope, n′T and n′R can be regarded as the number of effective
antennas in a correlated channel. This point is formalized by the proceeding result.

Proposition 3 For the Rayleigh-faded channel in (23),

S∞(Φ) ≤ min(n′T, n′R) (24)

with equality if and only if Φ is admissible.

Proof: See Appendix D.

With this result, we can now formalize some of the points made at the outset of the paper:

• The largest achievable high-SNR slope is min(n′T, n′R), irrespective of max(n′T, n′R).

• This slope is achieved under the mild condition that the input covariance be admissi-
ble.

• ΘT and ΘR are reflected on the slope only through their rank.

As discussed in detail in the conclusions, some of these observations should be nuanced
with a more pragmatic finite-SNR interpretation of the slope whereby n′T and n′R are defined
as the number of nonnegligible (rather than strictly nonzero) eigenvalues of ΘT and ΘR.
This interpretation, nonetheless, still lacks a connection between the correlations and the
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required power for a certain capacity. The role of the power offset is precisely to establish
such connection and to amend the assessments provided by the slope. Accordingly, we
shall henceforth consider only admissible input covariances. Thus, S∞ = min(n′T, n′R) and
we drop its dependence on Φ.

B The High-SNR Power Offset

Only the nonzero eigenvalues of the correlation matrices turn out to be relevant to the
power offset. Denoting by ΛR and ΛT the diagonal eigenvalue matrices of ΘR and ΘT,7

we define corresponding n′R × n′R and n′T × n′T diagonal matrices Λ′
R and Λ′

T obtained by
striking out the empty rows and columns of ΛR and ΛT, respectively.

It is also convenient to introduce an m×m matrix-valued function Ψi(m,Λ), i ∈ {1, . . . , m},
whose (k,`)th entry is

(Ψi)k,` = νn−m+k λn−m−1+`
n−m+k −

n−m∑
q=1

νqλ
n−m−1+`
q

n−m∑

d=1

(
Υ−1

)
d,q

λd−1
n−m+k (25)

where

νq =





1 ` 6= i

`−1∑
u=1

1
u
− γ + loge λq ` = i

(26)

while λj is the jth diagonal entry of the n× n matrix argument Λ. In turn, Υ(m,Λ) is the
(n−m)× (n−m) principal submatrix of the Vandermonde matrix

Ω(Λ) =




1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

1
... . . . ...

1 λn · · · λn−1
n


 (27)

Using these definitions, we can put forth the following result.

Proposition 4 Consider any input covariance Φ = VPV† where V is such that ΘT = VΛTV
†

and denote by P′ the n′T×n′T matrix obtained by striking from P the same rows and columns that

7Since the eigenspaces of ΘT and Φ are common, the diagonal entries of ΛT and P should be ordered
equally.
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were removed from ΛT to obtain Λ′
T. Then,

L∞(Φ) =





log2 nT − 1
n′R

log2 detΛ′
R −

detΥ(n′R,Λ′TP′)
detΩ(Λ′TP′)

log2 e
n′R

n′R∑
i=1

detΨi (n
′
R,Λ′

TP′) n′T >n′R

log2 nT +


γ −

n′T∑

`=2

1
`


 log2e− 1

n′T
log2 det(Λ′

RΛ
′
TP

′) n′T =n′R

log2 nT − 1
n′T

log2 det(Λ′
TP

′)− detΥ(n′T,Λ′R)
detΩ(Λ′R)

log2e
n′T

n′T∑
i=1

detΨi (n
′
T,Λ′

R) n′T <n′R

(28)

For an isotropic input, L∞◦ is given by the right-hand side of (28) with P′ replaced by the n′T × n′T
identity matrix.

Proof: See Appendix E.

Note that, if any of the nonzero eigenvalues of either ΘR or ΘT has plural multiplicity, in
some of the terms in (28) both numerator and denominator vanish but their ratio remains
well defined.

An example of the applicability of Proposition 4 can be given by referring back to Fig. 1.

Example 3 Let nT = nR = 4 and consider the nonsingular transmit and receive correlation
matrices

ΘT = ΘR (29)

=




1 0.76 0.21 −0.27
0.76 1 0.76 0.21
0.21 0.76 1 0.76
−0.27 0.21 0.76 1


 (30)

For an isotropic input, the high-SNR expansion of the capacity with S∞ = 4 and with L∞◦ ob-
tained from Proposition 4 is depicted in Fig. 1 alongside a corresponding Montercarlo simulation
of I(SNR, I).

As we illustrate next, Proposition 4 leads to compact expressions when the number of
effective antennas is modest.

Corollary 3 Let n′T = n′R = 1. Proposition 4 yields

L∞(Φ) = γ log2 e− log2(p
′
1nR) (31)

12



The power offset in (31) evidences the advantage of having multiple antennas even if
they are fully correlated. This advantage would be overlooked by a high-SNR analysis that
relied solely on S∞.

Corollary 4 Let n′T = 2 and n′R = 1 with λ′1 and λ′2 the nonzero eigenvalues of ΘT. Then,

L∞(Φ) = 1 + γ log2 e− log2 nR − p′2λ
′
2 log2(p

′
2λ
′
2)− p′1λ

′
1 log2(p

′
1λ
′
1)

p′2λ
′
2 − p′1λ

′
1

(32)

Corollary 5 Let n′T = 1 and n′R = 2 with λ′1 and λ′2 the nonzero eigenvalues of ΘR. Then,

L∞(Φ) = γ log2 e− log2 p′1 −
λ′2 log2 λ′2 − λ′1 log2 λ′1

λ′2 − λ′1
(33)

Corollary 6 Let n′T = 1 and n′R = nR = 3 with λ1, λ2 and λ3 the nonzero eigenvalues of ΘR.
Then,

L∞(Φ) = γ log2 e− log2 p′1 −
(λ2 − λ1)λ

2
3 log2 λ3 + (λ3 − λ2)λ

2
1 log2 λ1 + (λ1 − λ3)λ

2
2 log2 λ2

(λ2 − λ1)λ2
3 + (λ3 − λ2)λ2

1 + (λ1 − λ3)λ2
2

(34)
If λ2 = λ3 = λ, then (34) becomes

L∞(Φ) = γ log2 e− log2 p′1 −
λ2

1 log2 λ1 + λ2 log2(λe)− λ1λ log2(λ
2e)

(λ1−λ)2
(35)

Corollary 7 Let n′T = n′R = 2 with λ′j(·) the jth nonzero eigenvalue of a matrix. Then,

L∞(Φ) = 1 + (γ − 1
2
) log2 e− log2(p

′
1λ
′
1(ΘT)λ′1(ΘR)) + log2(p

′
2λ
′
2(ΘT)λ′2(ΘR))

2
(36)

Although, in general, the expressions in Proposition 4 become progressively involved as
the number of antennas grows large, it can be shown using random matrix theory that
they crystalize into compact fixed-point equations.

Proposition 5 For nT, nR → ∞ such that n′T and n′R also grow without bound, with ratio β′ =
n′T/n′R,

L∞(Φ) →





−E
[
log2

Λ′R
αβ′e

]
− β′E [log2 (1 + α Λ′)] β′ > 1

−E
[
log2

Λ′RΛ′

e

]
β′ = 1

−E
[
log2

ϕ Λ′
e

]
− 1

β′E
[
log2

(
1 +

Λ′R
ϕ

)]
β′ < 1

(37)
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where α and ϕ are solutions to

E

[
1

1 + α Λ′

]
= 1− 1

β′
(38)

E

[
1

1 +
Λ′R
ϕ

]
= 1− β′. (39)

The expectations are over Λ′ and Λ′R whose distributions equal the limiting (nT, nR →∞) empirical
distributions of the diagonal entries of Λ′

TP′ and Λ′
R, respectively.

The limiting value of L∞◦ is also given by (37), (38) and (39), except with Λ′ distributed according
to the limiting empirical distribution of the diagonal entries of Λ′

T.

Proof: See Appendix F.

The large-dimensional behavior in Proposition 5 settles rapidly and hence the corre-
sponding solutions provide, as will be illustrated next, alternative means to evaluate the
power offset that are accurate even for small numbers of antennas.

Example 4 The transmit array has nT = 4 antennas arranged into a uniform linear array with
d equal to the spacing (in wavelengths) between adjacent antennas. Given a broadside (truncated)
Gaussian power azimuth spectrum with a 2◦ root-mean-square spread, the transmit antenna cor-
relations are [23]

(ΘT)i,j ≈ e−0.05 d2(i−j)2 (40)

The receive array has nR = 2 uncorrelated antennas. Fig. 3 depicts I(SNR, I) with an isotropic
input and Rayleigh fading, computed via Montecarlo simulation and parameterized by d. Also
shown is the high-SNR expansion with S∞ = 2 bits/s/Hz/(3 dB) and with L∞◦ computed using
Proposition 4. A comparison between these exact values for L∞◦ and those obtained using Proposi-
tion 5, with the expectations replaced by arithmetic means over the nonzero eigenvalues of ΘT, is
presented in Table 1.

As in other mutual information analyses [24, 25, 26], we find an excellent agreement be-
tween the asymptotic (nT, nR → ∞) results and the exact results for small numbers of
antennas.

C Asymptotically Optimal Power Allocation

While the high-SNR slope is invariant to the power allocation as long as the input covari-
ance is admissible, the power offset captures the sensitivity of the high-SNR capacity to the
power allocation.

14
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Table 1: High-SNR power offset in Example 4 as function of d. Exact values vs. asymptotic
approximation

d L∞◦ (exact) L∞◦ (asymptotic)
→∞ 1.3 dB 1.3 dB
2 3 dB 3.2 dB
1 5.2 dB 5.6 dB

15



Necessary and sufficient conditions for P to achieve capacity at any SNR, as well as an
iterative power allocation algorithm, are given in [27]. For SNR → ∞, the asymptotically
optimal power allocation is the one that, within the class of admissible input covariances,
minimizes the power offset.

Proposition 6 The null space of the asymptotically optimal power allocation coincides with the
null space of ΛT.

Proof: See Appendix G.

It follows from Proposition 6 that, for the asymptotically optimal power allocation, the
rows and columns removed from P to obtain P′ are empty and thus

Tr{P′} = Tr{P} (41)
= nT. (42)

Moreover, the powers along the diagonal of the resulting P′ are strictly positive. Let us
denote by P? the asymptotically optimal P′.

Proposition 7 For n′T ≤ n′R,
P? =

nT

n′T
I (43)

while, for n′T > n′R,

P? = arg max
Ξ:Tr{Ξ}=nT





detΥ (n′R,Λ′
TΞ)

detΩ (Λ′
TΞ)

n′R∑
i=1

detΨi (n
′
R,Λ′

TΞ)



 (44)

with the maximization taken over all n′T × n′T positive-definite diagonal matrices with trace equal
to nT.

Proof: See Appendix H.

For n′T ≤ n′R the asymptotically optimal power allocation is uniform outside the null space
of ΛT. The suboptimality of a nonuniform power allocation is easily quantified as a power
loss equal to

− 1
n′T

n′T∑
j=1

log2

(
n′T
nT

pj

)
. (45)

Example 5 Consider arbitrary transmit and receive correlations, such that nT = n′R = 4 and
n′T = 3. From (45), the power allocation

P′ =




0.1 0 0
0 2.8 0
0 0 0.1


 (46)
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incurs a 6.4-dB power loss with respect to the asymptotically optimal allocation P′ = 4
3
I.

For n′T > n′R, in contrast, P? is generally nonuniform, determined by the nonzero eigen-
values of ΘT via the constrained maximization in (44). For specific numbers of antennas,
(44) can be expatiated into more revealing optimality conditions.

Proposition 8 Let nT = n′T = 2 and n′R = 1 with λ1 and λ2 the nonzero eigenvalues of ΘT. The
optimum powers p?

1 and p?
2 satisfy

p?
1 = λ2 − λ1λ2

2
loge

p?
2λ2

p?
1λ1

(47)

p?
2 = λ1 +

λ1λ2

2
loge

p?
2λ2

p?
1λ1

. (48)

Example 6 For λ1 = 1.5 and λ2 = 0.5, Proposition 8 yields p?
1 = 1.85 and p?

2 = 0.15.

Note that, when the transmitter has access only to the distribution of H (but not to its
realization), P? does not correspond to a waterfill on any statistical measure of the chan-
nel [28, Section 8.3]. This is in contrast with the regime in which H is known by the
transmitter, in which case parallel noninteracting channels can be created and the power
allocation does reduce to a waterfill [1, 4].

D Impact of Correlation

As long as ΘT and ΘR are nonsingular, S∞ = n⇓ as in an IID channel and hence correlation
appears to be immaterial. A power-offset analysis, however, reveals its impact even when
the correlation matrices are nonsingular.

Definition 3 For any correlated Rayleigh-faded channel conforming to (23), we use ∆L∞ to
denote the excess power offset relative to that of its IID Rayleigh-faded counterpart.

D.1 Impact of Correlation: Isotropic Input

With an isotropic input, correlation within (23) is known to reduce the mutual information
at every SNR [29] and thus, necessarily, ∆L∞◦ ≥ 0. This is indeed verified from our power
offset expressions.
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Table 2: Excess power offset in Example 7 as function of d.
d 4 2 1 0.75
∆L∞◦ 0.9 dB 5.4 dB 13 dB 16.1 dB

Corollary 8 Let nR = 1 and nT = 2 with nonzero transmit correlation eigenvalues λ1 < λ2.
From (15) and (32),

∆L∞◦ =

(
1− λ2 loge λ2 − λ1 loge λ1

λ2 − λ1

)
log2 e (49)

≥ 0 (50)

where (50) follows from the convexity of x log x and the chord lemma [30].

D.2 Impact of Correlation: Asymptotically Optimal Input

Propositions 1 and 4 also enable quantifying the impact of correlation on the power offset
with optimum input covariances.

Corollary 9 For n′T = n′R = n′,

∆L∞ =
1

n′

n′∑
j=1

log2

1

λ′j(ΘR)λ′j(ΘT)
(51)

This penalty, given as an upper bound in [13, Eq. 26] and as a large-dimensional limit in
[4, Eq. 20], is hereby shown to be exact and valid for arbitrary n′.

Example 7 Let nT = nR = 4 with both arrays uniform and linear and with d the spacing (in
wavelengths) between adjacent antennas at either end. Further let Φ = I. Consider, at the trans-
mitter, a broadside (truncated) Gaussian power azimuth spectrum with a 2◦ root-mean-square
spread and, at the receiver, a 360◦ uniform spectrum. The corresponding correlations are [23, 31]

(ΘT)i,j = e−0.05 d2(i−j)2 (52)
(ΘR)i,j = J0(2πd|i− j|) (53)

where J0(·) is the zero-order bessel function of the first kind. Table 2 lists the values obtained from
(51), parameterized by d.

Note the severity of the penalty for small d. Since wireless systems are usually not de-
signed to operate beyond SNR levels on the order of 20–25 dB, the power penalties in
Table 2 are highly significant for antennas spaced by as much as two wavelengths.
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For n′T 6= n′R, ∆L∞ can also be quantified exactly from Propositions 1 and 4, although not
always by means of an explicit expression. The excess power offset does become explicit
whenever correlation is present only at the side of the link with the fewest antennas, in
which case

∆L∞ =





− 1
n′R

n′R∑
i=1

log2 λi(ΘR) n′T > n′R,ΘT = I

− 1
n′T

n′T∑
j=1

log2 λj(ΘT) n′T < n′R,ΘR = I

(54)

As an alternative to the exact expressions, ∆L∞ can be approximated by resorting to the
large-dimensional results in Proposition 5 (with the expectations replaced by arithmetic
means over the diagonal entries of Λ′

TP
? and Λ′

R) and Proposition 2.

It is worth summarizing the insight provided by the power offset on the impact of corre-
lation on the capacity at high SNR, contrasting it with how it affects it at low SNR [16, 32]:

• Receive correlation reduces the capacity at every SNR. While the power loss caused by
such correlation at high SNR, quantified by ∆L∞, is determined by a (weighted) average
of the logarithm of the correlation eigenvalues, the low-SNR bandwidth penalty associ-
ated with receive correlation is determined by the average of the squared correlation
eigenvalues.

• For n′T ≤ n′R, transmit correlation reduces the capacity at high SNR while increasing it at
low SNR.

• For n′T > n′R, transmit correlation increases the low-SNR capacity. Although assessing its
exact impact at high SNR is sometimes complicated by the lack of explicit expressions
for P?, transmit correlation may result in a capacity increase. Despite the fact that it
lessens the diversity, transmit correlation has indeed the beneficial effect of enabling
some degree of beamforming in the direction of the receiver

For n′T > 1 and n′R = 1, specifically, the capacity at any SNR is known to be Schur-convex
with respect to the eigenvalues of the transmit correlation [33]. With the aid of the power
offset, the high-SNR value of this benefit is easily quantified.

Example 8 Let nT = n′T = 2 and n′R = 1. With the transmit correlation and asymptotically
optimal powers given in Corollary 8, ∆L∞ = −0.52 dB.

Additional results on the capacity impact of transmit correlation can be easily put forth.
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Table 3: Measurement set-up
Carrier frequency 2.11 GHz
Base station height 100 m
Terminal height 1.5 m
Antenna gain 4 dBi
Mutual coupling < −30 dB
Ricean factor <−10 dB

Example 9 Let nT be arbitrary while nR = 1. As the transmit antennas become increasingly
correlated, the transmit power concentrates on a single eigenvector and the excess power offset
approaches

∆L∞ → log2 e

nT−1∑

`=1

1
`
− 2 log2 nT (55)

which is always negative. For large nT, (137) and (55) yield

∆L∞ ≈ γ log2 e− log2 nT. (56)

As a complement to the examples provided thus far, in the following example we quantify
the excess power offset using experimental data.

Example 10 Consider the correlation matrices obtained during an extensive measurement cam-
paign conducted in New York City and reported in [34]: a narrowband transmit array, acting as a
base station, was installed on a high-rise building while a receive array was mounted on a vehicle.
As detailed in Table 3, each array contained 16 antennas, 8 on each polarization (vertical and hor-
izontal). A total of 367 pairs of base station and terminal correlation matrices are processed with
each polarization treated separately. Plugged in (51), each pair of correlation matrices yields an
excess power offset, ∆L∞. For each polarization, a cumulative distribution of these excess power
offsets is displayed in Fig. 4. The geometry of the arrays and antenna spacings (in wavelengths) is
also depicted.

We observe that, in the dense urban environment in which the data was gathered, the
excess power offset caused by correlation at high SNR, with an equal number of transmit
and receive antennas, is on average modest: roughly 3 dB. In the worst 10% of locations,
however, it is heftier: 6–9 dB.
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Figure 4: Cumulative distribution of excess power offsets experimentally measured (cf.
Example 10). For each polarization, nT = nR = 8 with the transmit and receive arrays
displayed within the figure. The indicated antenna spacings are in wavelengths.
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V Ricean Channels

A Uncorrelated Ricean Channels

We now turn our attention to nonzero-mean channels of the kind

H =
√

K
K+1

H̄ +
√

1
K+1

W (57)

where H̄ is deterministic and arbitrary, normalized such that Tr{H̄H̄†} = nRnT, while the
entries of W are IID Rayleigh-faded and K < ∞ is the Ricean factor between the unfaded
(deterministic) and fading (random) components.

For this class of channels, we circumscribe the analysis to isotropic inputs. If nT ≤ nR,
such inputs are asymptotically optimal for SNR → ∞ [35] and hence we find L∞. For
nT > nR, we evaluate only L∞◦ .

It is easily verified that, with an isotropic input, the high-SNR slope is S∞ = n⇓. The power
offset, in turn, is characterized by the following result. Since the key parameter in a Ricean
channel is K, we explicitly write L∞◦ (K).

Proposition 9 Denoting by φj , j ∈ {1, . . . , n⇓}, the nonzero eigenvalues of KH̄H̄†,

L∞◦ (K) = L∞◦ (0) + log2(K + 1)− log2 e

n⇓

∑n⇓
i=1 detΞi∏

i<j(φi − φj)
(58)

where L∞◦ (0) coincides with the power offset for an IID Rayleigh-faded channel in Proposition 1
while Ξi, i ∈ {1, . . . , n⇓}, is an n⇓ × n⇓ matrix whose entries are

(Ξi)k,` =





φ
n⇓−`

k ` 6= i

φ
n⇓−`

k z(k, `) ` = i
(59)

with

z(k, `) = 2F2(1,1;2,n⇑−`+2;−φk)

n⇑−`+1
φk (60)

= loge φk + E1(φk) + γ −
n⇑−`∑
q=1

1
q

+

n⇑−`∑
q=1

(−φk)
−q

(
e−φk (q − 1)!− (n⇑−`)!

q (n⇑−`−q)!

)
(61)

where 2F2(·) is a hypergeometric function while

E1(x) =

∫ ∞

1

e−x ξ

ξ
dξ (62)
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is an exponential integral.

Proof: See Appendix I.

It is worth noting that, while the hypergeometric function 2F2(·) corresponds—in general—
to an infinite series, for the arguments in (60) we have been able to evaluate it in the
closed-form (61) following the procedure in [7, Appendix X].

Corollary 10 For nT = nR = 1,

L∞(K) = L∞◦ (K) (63)

= log2

K + 1

K
− E1(K) log2 e (64)

which satisfies 0 ≤ L∞(K) ≤ L∞(0). This expression can also be found in [7].

Corollary 11 For nT = nR = 2,

L∞(K) = L∞◦ (K) (65)

= 1 + log2

K + 1√
φ1φ2

− log2 e

2

(
E1(φ1) + E1(φ2)− e−φ2 − e−φ1

φ2 − φ1

)
. (66)

The excess power offset induced by the Ricean component can be either positive or neg-
ative depending on the nature of such component and the numbers of antennas.

Often, the unfaded component is associated with a line-of-sight or a diffracted wave and
thus it is essentially unit-rank, i.e, H̄ = aRa†T where the vectors aT and aR are the transmit
and receive array responses to a plane wave.

Corollary 12 With a rank-1 unfaded component,

L∞◦ (K) = L∞◦ (0) + log2(K + 1)− K

loge 2
2F2(1, 1; 2, n⇑ + 1;−Kn⇓n⇑) (67)

= L∞◦ (0) + log2

K + 1

(Kn⇓n⇑)1/n⇓

− log2 e

n⇓


E1(Kn⇓n⇑) + γ −

n⇑−1∑

`=1

1
`
+

n⇑−1∑

`=1

e−Kn⇓n⇑ (`− 1)!− (n⇑−1)!

` (n⇑−1−`)!

(−Kn⇓n⇑)`


(68)

The high-SNR mutual information in Ricean channels with rank-1 unfaded component is
also analyzed in [36], where an approximate expression is given.
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Corollary 13 With nT = nR = 2 and rank-1 unfaded component,

L∞(K) = L∞◦ (K) (69)

= 1 + log2

(
K + 1

2
√

K

)
− log2 e

2

(
E1(4K)− γ − e−4K − 1

4K

)
(70)

which satisfies L∞(K) ≥ L∞(0).

While Corollary 10 affirms that the presence of a rank-1 unfaded component can only
reduce the power offset on a scalar channel, Corollary 13 shows that this is no longer
the case in a matrix channel. In fact, since the hypergeometric function in (67) decreases
monotonically if either n⇓ or n⇑ grow, the behavior of Corollary 13 extends to any rank-1
Ricean channel with n⇓ ≥ 2. It is worth contrasting this finding with the result put forth
in [37, 38] (for arbitrary SNR), namely, that if the power received over the fading portion
of the channel is held constant, then an unfaded component can only increase the mutual
information. If the total received power is held constant, then this is not the case (at high
SNR). The impact of Ricean components at high SNR is thus seen to depend critically on the
coupling between the faded and unfaded components in terms of power gain.

As the number of antennas grows large, the excess power offset caused by a rank-1 un-
faded component adopts a remarkably simple form:

lim
nT,nR→∞

L∞◦ (K)− L∞◦ (0) = log2(K + 1) (71)

indicating that, for sufficiently many antennas, the presence of a Ricean component has
a deleterious effect at high SNR. Specifically, the mutual information achieved by an
isotropic input in a channel whose unfaded component is rank-1 behaves, as the num-
ber of antennas grows large,8 as if only the fading portion of the channel were present.
This behavior is a direct manifestation of the fact that only a single eigenvalue of HH† is
perturbed by the presence of the deterministic component. For nT, nR→∞, this perturba-
tion is not reflected in the empirical eigenvalue distribution of HH†, which determines
the power offset. Moreover, this is the case even if the rank of H̄H̄† is r > 1 as long as
[39, 40]

lim
nT,nR→∞

r

n⇓
= 0. (72)

8In this case, the convergence of the mutual information and of related quantities such as the power
offset to their limiting values may be significantly slower than in the case of zero-mean channels.
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B Correlated Ricean Channels

The power offset expressions for the standard Ricean channel in (57) can be easily ex-
tended to certain correlated Ricean channels of the form

H =
√

K
K+1

H̄ +
√

1
K+1

Θ
1/2
R WΘ

1/2
T (73)

where ΘR and ΘT are nonsingular receive and transmit correlation matrices.

It is easily verified that, for the channel in (73) with nT < nR and ΘR = I, L∞◦ is given by
(58), (59) and (61) except with:

• L∞◦ (0) equal to the power offset of the channel H = WΘ
1/2
T , provided by Proposition 4

with P′ = I.

• φj the nonzero eigenvalues of KH̄Θ−1
T H̄†.

For the channel in (73) with nT > nR and ΘT = I, L∞◦ is given by (58), (59) and (61) except
with:

• L∞◦ (0) equal to the power offset of the channel H = Θ
1/2
R W, provided by Proposition 4

with P′ = I.

• φj the nonzero eigenvalues of KH̄H̄†Θ−1
R .

For the channel in (73) with nT = nR, L∞◦ is given by (58), (59) and (61) except with:

• L∞◦ (0) equal to the power offset of the channel H = Θ
1/2
R WΘ

1/2
T , provided by Proposi-

tion 4 with P′ = I.

• φj the nonzero eigenvalues of KH̄Θ−1
T H̄†Θ−1

R .

VI Interference-limited Channels

In addition to quantifying the impact of channel features such as correlation and unfaded
components, the power offset can also be used to reveal the impact on the capacity of
certain noise attributes. An interesting scenario is that of intercell interference, which—
like the desired signal itself—is subject to fading and correlation. Interference-limited
scenarios, in fact, are very relevant to modern cellular systems, which tend to operate
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precisely in such conditions. Let us thus consider an interference-limited model where
the interference emanates from a single multiantenna array,

y =
√

g Hx +
√

gI HIxI (74)

where the underlying thermal noise has been neglected and xI is an nI-dimensional isotropic
Gaussian signal whose codebook is unknown to the receiver. The random channel HI,
known at the receiver, is subject to the standard normalization, E[Tr{HIH

†
I}] = nInR. The

conditional covariance of the interference is then

E [
√

gI HIxI|HI] = gI
E [‖xI‖2]

nI

HIH
†
I . (75)

In order to contrast the essence of the intercell interference scenario in (74) with that of
AWGN, we model both H and HI as IID Rayleigh-faded and thus the capacity-achieving
input is isotropic and the ergodic capacity becomes

C(SNR) = E

[
log2 det

(
I + SNR HH†

nT

(
HIH

†
I

nI

)−1
)]

(76)

with expectation over both H and HI and with

SNR =
gE[‖x‖2]

gIE[‖xI‖2]
. (77)

The dimensionality of the interference must be restricted to nI ≥ nR for otherwise some
spatial dimensions would be interference-free and the capacity would be unbounded.9

With this restriction, HIH
†
I is nonsingular with probability 1 and the high-SNR slope is the

usual S∞ = n⇓. In order to assess the role of nI, we must once again resort to the power
offset.

Proposition 10 For the interference-limited channel in (74),

L∞ = log2

nT

nI

+
log2 e

n⇓

n⇓∑

k=1




nI−k−[nR−nT]+∑

`=1

1
`
−

n⇑−k∑

`=1

1
`


 (78)

where [·]+ = max(·, 0). For nT = nR=n, (78) simplifies to

L∞ = log2

n

nI

+
log2 e

n

n∑

k=1

nI−k∑

`=n−k+1

1
`

(79)

Proof: See Appendix J
9This limitation is an artifact of the model. In any actual situation, the inevitable thermal noise underly-

ing the interference would prevent it from ever being singular. Nonetheless, for nI ≥ nR this is an adequate
model for scenarios where the interference dominates.
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For nI/nR → ∞, the interference becomes white and the above expressions converge to
the corresponding ones for AWGN (cf. Proposition 1). For finite nI/nR, however, the
power offset is strictly lower than in AWGN. Its lowest value, found for nI = nR, is

L∞ = log2

nT

nR

− log2 e

n⇓

n⇓∑

k=1

n⇑−k∑

`=n⇓−k+1

1
`

(80)

If nT = nR = nI, in particular, then L?
∞◦ = 0.

Also of interest is the power offset in the large-dimensional limit, for which it is again
possible to obtain closed-form expressions.

Proposition 11 For nT, nR, nI →∞ with nT/nR = β and nI/nR = βI where βI ≥ 1,

L∞ →





(β − 1) log2(1− 1
β
)− (βI − 1) log2(1− 1

βI
) β > 1

−(βI − 1) log2(1− 1
βI

) β = 1

( 1
β
− 1) log2(1− β) + log2

β+βI−1
βI/β

+ βI−1
β

log2(1 + β
βI−1

) β < 1

(81)

Proof: See Appendix J.

For βI = 1, the expressions in Proposition 11 reduce to

L∞ →





(β − 1) log2(1− 1
β
) β > 1

0 β = 1

( 1
β
− 1) log2(1− β) + 2 log2 β β < 1

(82)

which is the large-dimensional limit of (80).

In an interference-limited channel, the shift in power offset due to the interference being
subject to fading is essentially the opposite of the shift caused by fading in the desired
signal. If the number of interfering antennas equals the number of transmit antennas,
then both effects cancel out and the high-SNR capacity equals that of an AWGN-channel
whose dimensions were unfaded and orthogonal.

Although, throughout this section, we have considered a single multiantenna interferer,
the exact same analysis holds for multiple equal-power interferers. Also, the characteri-
zation can be extended to correlated signal and interference [26], for which similar obser-
vations can be made: if the interference is correlated at the receiver, the effect is essentially
the opposite of the desired signal being correlated.
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The main finding of this section is that there is much to be gained by exploiting the spatial
color of dominant interferers even if their codebooks are unknown. For example, when
nT = nR = 4, the difference in power offset between background noise being spatially
white or emanating from a 4-antenna interferer is 3.8 dB.

VII Conclusions

The capacity (or, more generally, the mutual information) regulates the interplay between
power, bandwidth and rate. With transmit power P and bandwidth B, the rate R that
can be conveyed with arbitrary reliability must satisfy R/B ≤ I where, in the high-SNR

regime,

I ≈ S∞

(
g P

BN0
|dB

3 dB
− L∞

)
(83)

with N0 the noise spectral density per receive antenna and with g the average path-gain.
Given a desired rate and available bandwidth, the minimum required transmit power is
therefore

P |dB ≈ BN0

g
|dB +

(
R

BS∞
+ L∞

)
3 dB (84)

where the approximation sharpens as SNR → ∞. The power required to sustain a certain
rate R with a given bandwidth B is critically influenced, at high R/B, by L∞. In this pa-
per, we have derived analytical characterizations of L∞ from which the impact of various
features (correlation, Ricean factors, interference, etc) can be insightfully assessed. While
the focus has been on single-user channels, many of the results apply almost verbatim to
multiple-access channels where a number of scalar transmitters access a common multi-
antenna receiver.

Although S∞ and L∞ are asymptotic (high-SNR) quantities, we have exemplified how the
expansion they render can be utilized to approximate the mutual information at high but
finite SNR (cf. Fig. 1 and Fig. 3). In order to increase the relevance of these quantities
in the finite-SNR realm, it is helpful to acknowledge that, at any given SNR, some nonzero
channel singular values may be “dormant” (i.e., well below the noise) and thus, at such
SNR, the contribution of these singular is negligible [3]. In the case of a correlated channel
at a certain SNR, for instance, this pragmatic interpretation states that those eigenvalues
of the correlation matrices that are significantly smaller than 1/SNR should be regarded as
zero in the computation of S∞ and L∞. Armed with this perspective, we can revisit the
correlated Rayleigh-faded channel in Fig. 1. From the corresponding correlation matrices,
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given in (30), we have the nonzero correlation eigenvalues

Λ′
T = Λ′

R (85)

=




2.3 0 0 0
0 1.5 0 0
0 0 0.15 0
0 0 0 0.002


 (86)

which, plugged into Proposition 4, yield L∞◦ . In conjunction with S∞ = 4, this leads to
the expansion for SNR → ∞ depicted in Fig. 1. The pragmatic finite-SNR interpretation,
however, indicates that the smallest of the correlation eigenvalues should be neglected
below SNR levels on the order of 1/0.002 (roughly 27 dB) and the second smallest corre-
lation eigenvalue should be neglected below SNR levels on the order of 1/0.15 (roughly 9
dB). These eigenvalue exclusions lead to different expansions, respectively having S∞ = 3
and S∞ = 2 and correspondingly different power offsets as given by Proposition 4, which
are displayed in Fig. 5. Within the anticipated SNR ranges, these expansions do repre-
sent more accurately the behavior of the mutual information with an isotropic input thus
buttressing the validity of this finite-SNR interpretation of our asymptotic results.

To conclude, it is worth remarking that the expressions presented in this paper have di-
rect operational significance in ergodic channel conditions. In non-ergodic channels, the
power offset becomes a random quantity (whose expected value is precisely given by
the expressions in this paper). Although characterizing the outage distribution of such
random quantity might be analytically intractable, recent results indicate that this dis-
tribution becomes rapidly Gaussian as the number of antennas grows [14, Sec. 3.3.8].
Thus, the expressions given herein, complemented by those for the variance, would suf-
fice to provide accurate evaluations thereof. Also noteworthy in the realm of non-ergodic
channels is the fact that it is sometimes convenient to sacrifice some of the degrees of free-
dom in exchange for diversity, according to a well established tradeoff [41]. Hence, for
non-ergodic scenarios it would be of interest to study the power offset corresponding to
other points in this tradeoff, particularly in light of recently proposed codes that achieve
the optimum multiplexing-diversity tradeoff [42, 43] but that may nevertheless operate a
distance away from capacity. The high-SNR power offset quantifies this distance.

We lastly note that, although our analysis has focused on single-user multiantenna chan-
nels, some of the formulas apply verbatim to multiacess channels (with single-antenna
transmitters and a multiantenna receiver) and, in a number of cases, to broadcast channels
as well [44]. Additional characterizations of the power offset for multiantenna broadcast
channels can be found in [44].
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Figure 5: For nT = nR = 4, I(SNR, I) in a correlated Rayleigh-faded channel with identical
transmit and receive correlation matrices (cf. Example 3). The solid line indicates sim-
ulation while the dashed lines indicate the high-SNR expansions obtained by neglecting,
respectively, the smallest and the two smallest eigenvalues of the transmit and receive
correlation matrices. The corresponding high-SNR expansion with all of the correlation
eigenvalues accounted for is shown in Fig. 1.
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Appendices

A Auxiliary Results

We shall make use of the several results presented in this appendix. Lemma 1, in particu-
lar, has already been applied to multiantenna analyses by other authors [13, 45].

Lemma 1 [46](see also [47]) Let F and G be two n×n matrices whose (i,j)th entries are, respec-
tively, (F)i,j = fj(wi) and (G)i,j = gj(wi) where fj and gj , j = 1, . . . , n, are functions defined
on <+. Then, for b > a > 0,

∫ b

a

. . .

∫ b

a

detF detG dw1 . . . dwn = n! detA (87)

where A is another n× n matrix whose (i,j)th entry is

A =

∫ b

a

fi(w)gj(w) dw (88)

Note that, in [46], the factor n! does not appear because the variables w1, . . . , wn are in a
specific order. As claimed in Lemma 1, in contrast, they are unordered.

Lemma 2 Let W be a m×n matrix with IID zero-mean unit-variance complex Gaussian random
entries and with m < n. Let Θ be a n× n Hermitian positive-definite matrix. Then,

E
[
loge det

(
WΘW†)] =

detΥ

detΩ

m∑
i=1

detΨi (89)

where Ψi is an m×m matrix whose entries are

(Ψi)k,` = νn−m+k λn−m−1+`
n−m+k −

n−m∑

d=1,q=1

νq (Υ−1)d,q λd−1
n−m+k λn−m−1+`

q (90)

where λj is the jth eigenvalue of Θ while

νq =





1 ` 6= i

Ψ(`) + loge λq ` = i
(91)

In turn, Ω is the Vandermonde matrix

Ω =




1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

1
... . . . ...

1 λn · · · λn−1
n


 (92)
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and Υ is the (n − m) × (n − m) principal submatrix of Ω. Euler’s digamma function, ψ(·), is
given in (136).

Proof: Denoting by ξ1≥ξ2≥. . .≥ξm the ordered eigenvalues of WΘW†, their joint density
distribution is [48]

fξ(ξ1, . . . , ξm) =
detΓ detΞ

detΩ
∏m−1

`=1 `!
(93)

where

Ξ =




1 ξ1 · · · ξm−1
1

1 ξ2 · · · ξm−1
2

1
... . . . ...

1 ξm · · · ξm−1
m


 (94)

is also a Vandermonde matrix while

Γ =




1 λ1 . . . λn−m−1
1 λn−m−1

1 e−ξ1/λ1 . . . λn−m−1
1 e−ξm/λ1

1 λ2 . . . λn−m−1
2 λn−m−1

2 e−ξ1/λ2 . . . λn−m−1
2 e−ξm/λ2

...
... . . . ...

... . . . ...
1 λn . . . λn−m−1

n λn−m−1
n e−ξ1/λn . . . λn−m−1

n e−ξm/λn


 (95)

which, recalling the definition of Υ, conforms to the block structure

Γ =

[
Υ D
C B

]
. (96)

The joint density distribution of the unordered eigenvalues of WΘW†, in turn, is given by
1

m!
fξ(·). The moment-generating function of loge det(WΘW†) is thus

M(t) = E
[
det

(
WΘW†)t

]
(97)

=
1

detΩ
∏m

`=1`!

∫

ξ1...ξm

(
m∏

i=1

ξi

)t

detΓ detΞ dξ1, . . . , dξm (98)

=
detΥ

detΩ
∏m

`=1`!

∫

ξ1...ξm

(
m∏

i=1

ξi

)t

detΞ det
(
B−CΥ−1D

)
dξ1, . . . , dξm (99)

=
detΥ

detΩ
∏m

`=1`!

∫

ξ1...ξm

det
(
diag{ξt

1, . . . , ξ
t
m}Ξ

)
det

(
B−CΥ−1D

)
dξ1, . . . , dξm

(100)

where, in (99), we have used the determinant expansion of a block matrix [49]. Applying
Lemma 1,

M(t) =
detΥ detA

detΩ
∏m−1

`=1 ` !
(101)
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with A a m×m matrix whose (k,`)th entry is

(A)k,` =

∫ ∞

0

ξt+`−1

(
λn−m−1

n−m+k e
− ξ

λn−m+k −
n−m∑

d=1

n−m∑
q=1

(
Υ−1

)
d,q

λn−m−1
q λd−1

n−m+k e
− ξ

λq

)
dξ (102)

= λn−m−1+`+t
n−m+k Γ(` + t)−

n−m∑

d=1

n−m∑
q=1

(
Υ−1

)
d,q

λd−1
n−m+kλ

n−m−1+`+t
q Γ(` + t) (103)

where, in (103), we have invoked the definition of the Gamma function [50]

Γ(`) =

∫ ∞

0

ξ`−1e−ξ dξ (104)

which, for integer `, satisfies Γ(`+1) = ` ! From M(t),

E
[
logedet

(
WΘW†)] =

d

dt
M(t)|t=0 (105)

=
detΥ

detΩ
∏m−1

`=1 ` !

d

dt
detA|t=0 (106)

d
dt

detA|t=0 equals the sum of the determinants of m matrices, the ith of which has entries
that, except for the ith column, are given by the corresponding entries of A evaluated at
t = 0 whereas, for the ith column, are given by the derivative at t = 0 of the corresponding
entries of A. Applying this rule, using Γ̇(`) = Γ(`)ψ(`) and absorbing

∏m−1
`=1 `!, Lemma 2

follows from (106).

Lemma 3 Consider an m×n random matrix H = H̄+W, with m ≤ n, where H̄ is deterministic
while the entries of W are zero-mean unit-variance IID complex Gaussian. Denoting by φj ,
j ∈ {1, . . . , m}, the eigenvalues of H̄H̄,

E[loge det(HH†)] =
m−1∑
i=0

ψ(n− i) +

∑m
i=1 detΞi∏

i<j(φi − φj)
(107)

with ψ(·) the digamma function while Ξi, i ∈ {1, . . . , m}, is an m×m matrix whose entries are

(Ξi)k,` =

{
φm−`

k ` 6= i

φm−`
k z(k, `) ` = i

(108)

with

z(k, `) = 2F2(1,1;2,n−`+2;−φk)
n−`+1

φk (109)

= loge φk + E1(φk) + γ −
n−∑̀
q=1

1
q

+
n−∑̀
q=1

(−φk)
−q

(
e−φk (q − 1)!− (n−`)!

q (n−`−q)!

)
(110)
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where E1(·) is an exponential integral while 2F2(·) is the hypergeometric function

2F2(1, 1; 2, p; z) =
∞∑

q=0

(p−1)!
(p+q−1)!

zq

q+1
. (111)

Proof: The density distribution of the m×m noncentral Wishart matrix HH† is [51]

fHH†(S) =
0F1(n, H̄H̄†S)

πm(m−1)/2
∏m

i=1(n− i)!
det(S)n−m e−Tr{H̄H̄†+S} (112)

from which the moment-generating function of loge det(HH†) can be obtained as

M(t) = E[det(HH†)t] (113)

=

∫

S>0

det(S)t+n−m 0F1(n, H̄H̄†S)

πm(m−1)/2
∏m

i=1(n− i)!
e−Tr{H̄H̄†+S} dS (114)

= 1F1(n + t, n, H̄H̄†) e−Tr{H̄H̄†}
m∏

i=1

(t + n− i)!

(n− i)!
(115)

where 0F1(·, ·) and 1F1(·, ·, ·) are hypergeometric functions of matrix argument and, in
(115), we have used [51]

π−m(m−1)/2

∏m
i=1(a− i)!

∫

S>0
pFq(a1, . . . , ap, b1, . . . , bq,SZ)

det(S)a−m

eTr{S} dS = p+1Fq(a1, . . . , ap, a, b1, . . . , bq,Z)

(116)
The hypergeometric function of matrix argument 1F1(·, ·, ·) in (115) is given by [52, 53]

1F1(n + t, n, H̄H̄†) =
detG∏

i<j(φi − φj)
(117)

where the entries of the m×m matrix G are

(G)k,` = φm−`
k 1F1(n + t− ` + 1, n− ` + 1, φk). (118)

From M(t),

E[loge det(HH†)] =
d

dt
M(t)|t=0 (119)

=
m−1∑
i=0

ψ(n− i) +

∑m
i=1 detΞi∏

i<j(φi − φj)
(120)

where the entries of Ξi are

(Ξi)k,` =





φm−`
k ` 6= i

φm−`
k

(
−ψ(n− ` + 1) + e−φk

∞∑
q=0

φq
k

q!
ψ(n− ` + 1 + q)

)
` = i
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The expression for (Ξi)k,i can be further manipulated into the hypergeometric form in
(109) and, using the equivalence in [7, Eqs. 414 and 418], also into the closed form in
(110).

Lemma 4 Let X and Y be independent random matrices whose entries are zero-mean IID com-
plex Gaussian, respectively n×m and n× p, with m ≤ n ≤ p. Then,

E
[
loge det

(
X† (YY†)−1

X
)]

=
m∑

k=1

(
n−k∑

`=1

1
`
−
m+p−n−k∑

`=1

1
`

)
(121)

Proof: The density distribution of Z = X† (YY†)−1
X is [51, 54]10

fZ(S) =
Γ̃n(m + p)

Γ̃n(p)Γ̃m(n)
det(I + S)−(m+p) det(S)n−m (122)

where

Γ̃a(b) = πa(a−1)/2

a∏
i=1

(b− i)! (123)

Denote by M(t) the moment-generating function of loge detZ. From (122), for t ∈ (−1, 1),

M(t) = E
[
det(Z)t

]
(124)

=
Γ̃n(m + p)

Γ̃n(p)Γ̃m(n)

∫

Z

det(I + Z)−(m+p) det(Z)n−m+t dZ (125)

Using the following generalization to complex m×m matrices of the result given by real
matrices in [54],

∫

S>0

det(I + S)−(r+s) det(S)r−m dS =
Γ̃m(r)Γ̃m(s)

Γ̃m(r + s)
(126)

the moment-generating function turns out to be

M(t) =
Γ̃n(m + p) Γ̃m(n + t) Γ̃m(m + p− n− t)

Γ̃n(p) Γ̃m(n) Γ̃m(m + p)
(127)

from which

E[loge detZ] =
d

dt
M(t)|t=0 (128)

=
m−1∑
i=0

(ψ(n− i)− ψ(m + p− n− i)) (129)

which, using (136), leads to the claim.

10In fact, [54] gives the density distribution for matrices of the form X† (
YAY†)−1

X where A is a deter-
ministic matrix. Thus, a more general version of this lemma could be derived with application to multi-
antenna channels with correlated interference.
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B Proof of Proposition 1

Let nT ≥ nR. Using (5) with Φ = I, the capacity is

C(SNR) = nR log2 SNR + E
[
log2 det

(
1

SNRI + 1
nT

WW†
)]

. (130)

where W has IID unit-variance Rayleigh-faded entries. Recognizing S∞(I) = nR and
applying (11),

L∞ = log2 nT − 1
nR

E
[
log2 det

(
WW†)] (131)

where the Wishart matrix WW†, nonsingular with probability 1, satisfies [55, 56]

E
[
loge det

(
WW†)] =

nR−1∑

`=0

ψ(nT − `) (132)

with ψ(·) the digamma function in (136). Plugging (132) into (131) and invoking

1 + 1
n

n∑

`=1

ψ(`) = ψ(n + 1) (133)

we obtain

L∞ = log2 nT − log2e
(

nT

nR
ψ(nT + 1)− nT−nR

nR
ψ(nT − nR + 1)− 1

)
(134)

from which, using (136), the final expression for L∞ is found.

For nT ≤ nR, an analogous derivation can be conducted originating from

C(SNR) = nT log2 SNR + E
[
log2 det

(
1

SNRI + 1
nT

W†W
)]

. (135)

In the case that nT = nR, both derivations become identical.

C Proof of Proposition 2

Proposition 1 can be written in terms of the digamma function [50]

ψ(n) = −γ +
n−1∑

`=1

1
`

(136)

which, for large n, behaves as

ψ(n) = loge n + O( 1
n
). (137)
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Thus, Proposition 1 leads directly to the limiting expressions in Proposition 2 in the case
of an IID Rayleigh-faded channel. As it turns out, these limiting expressions are valid
regardless of the fading distribution. For any channel with zero-mean unit-variance IID
entries, as nT, nR →∞ with β = nT/nR the capacity per antenna converges to [57]

1
nR
I(SNR, I) → log2

(
1 + SNR− 1

4
F(β, SNR

β
)
)

+β log2

(
1 + SNR

β
− 1

4
F(β, SNR

β
)
)
− β

log2 e

4 SNR
F(β, SNR

β
) (138)

given the auxiliary function

F(x, y) ,
(√

1 + y(1 +
√

x)2 −
√

1 + y(1−√x)2

)2

. (139)

Application of (11) to (138) leads again to the limiting expressions in Proposition 2, in this
case for arbitrary fading distributions (cf. [25, Eq. 15–16]).

D Proof of Proposition 3

The high-SNR slope can be calculated as [8]

S∞(Φ) = lim
SNR→∞

SNR İ(SNR,Φ)

log2 e
. (140)

where İ(SNR, ·) indicates the derivative with respect to SNR. Recalling (23), using the eigen-
value decompositions ΘR = UΛRU†, ΘT = VΛTV† and Φ = VPV†, and exploiting the
unitary invariance of W,

İ(SNR,Φ) =

nR∑
i=1

E

[
λi(H̃H̃†)

nT + SNR λi(H̃H̃†)

]
log2 e (141)

where H̃ =
(
Λ

1/2
R WΛ

1/2
T P1/2

)
and λi(·) denotes the ith eigenvalue. Thus,

lim
SNR→∞

SNR İ(SNR,Φ) = nR (1− Pr {λ=0}) log2 e (142)

where λ is a random variable whose distribution equals the marginal distribution of an
unordered eigenvalue of H̃H̃†. Since the entries of H̃ are independent and H̃H̃† has nR

eigenvalues,
Pr{λ = 0} = max

(
1− m

nR
, 1− n′R

nR

)
(143)
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where, recall, n′R is the number of nonzero entries in the diagonal matrix Λ
1/2
R while m

is introduced to indicate the number of nonzero entries in the diagonal matrix Λ
1/2
T P1/2.

Combining (142) and (143),
S∞(Φ) = min (m,n′R) (144)

and, given that m ≤ n′T, the claim is proved.

If and only if the input covariance is admissible, then m = n′T and (144) is met with strict
equality.

E Proof of Proposition 4

Exploiting the unitary invariance of the distribution of a matrix W with IID Rayleigh-
faded entries and the eigenvector commonality of Φ and ΘT,

log2 det
(
I + SNR

nT
Θ

1/2
R WΘ

1/2
T ΦΘ

1/2
T W†Θ1/2

R

)
= log2 det

(
I + SNR

nT
WΛTPW†ΛR

)
(145)

Let W′ be a n′R×n′T matrix obtained by eliminating from W the rows and columns whose
indices correspond, respectively, with those of zero eigenvalues of ΘR and ΘT. Using the
fact that, given a matrix A, det(I+A) is unaffected by the removal of any rows or columns
of A that are identically zero, the left-hand side of (145) can be further seen to equal

log2 det
(
I + SNR

nT
Θ

1/2
R WΘ

1/2
T ΦΘ

1/2
T W†Θ1/2

R

)
= log2 det

(
I + SNR

nT
W′Λ′

TP′(W′)†Λ′
R

)
(146)

For n′T ≥ n′R, we have that S∞ = n′R and that (W′Λ′
TP′(W′)†Λ′

R) is nonsingular with
probability 1. From (11),

L∞(Φ) = log2 nT − 1
n′R

E
[
log2 det

(
W′Λ′

TP′(W′)†Λ′
R

)]
(147)

= log2 nT − 1
n′R

log2e E
[
loge det

(
W′Λ′

TP′(W′)†
)]− 1

n′R
log2 det(Λ′

R) (148)

from which, applying Lemma 2, the corresponding expression in Proposition 4 follows.

For n′T ≤ n′R, we have that S∞ = n′T and that ((W′)†Λ′
RW′Λ′

TP′) is nonsingular with
probability 1. From (11),

L∞(Φ) = log2 nT − 1
n′T

E
[
log2 det

(
(W′)†Λ′

RW′Λ′
TP′)] (149)

= log2 nT − 1
n′T

log2e E
[
loge det

(
(W′)†Λ′

RW′)]− 1
n′T

log2 det (Λ′
TP′) (150)

from which, applying again Lemma 2, the corresponding expression in Proposition 4
follows.
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For n′T = n′R,

E
[
log2 det

(
W′Λ′

TP′(W′)†Λ′
R

)]
= E

[
log2 det

(
W′(W′)†

)]
+ log2 det (Λ′

TP′Λ′
R) (151)

from which, applying (132), the corresponding expression in Proposition 4 is found.

F Proof of Proposition 5

As argued in Appendix E, the removal of the projection of the channel on the null spaces
of ΘT and ΘR is inconsequential. Thus, we can restrict our consideration to n′R × n′T
channel matrices whose correlation matrices are nonsingular.

From [5, Prop. 4] (see also [14]), as n′T, n′R →∞ with ratio β′ = n′T/n′R,

1
n′R
I(SNR,Φ) → β′E [log2(1 + Λ′ SNR Ψ)] + E [log2(1 + ΛR

′
SNR Υ)]− β′ SNR ΨΥ log2e (152)

with Ψ and Υ the solutions to

Ψ =
1

β′
E

[
Λ′R

1 + Λ′R SNR Υ

]
(153)

Υ = E

[
Λ′

1 + Λ′ SNR Ψ

]
(154)

Let us study the behavior of Ψ for SNR →∞, to which end we define

ϕ , lim
SNR→∞

Ψ. (155)

Under the hypothesis that ϕ > 0, from (153) we obtain

E


 1

1 +
Λ′R
ϕ


 = 1− β′ (156)

Since ϕ is nonnegative:

• If β′ > 1, then (156) does not admit a nonzero solution and thus the above hypothesis
is contradicted. Thus, ϕ = 0.

• If β′ = 1, then (156) only admits the solution ϕ = 0. Again, the hypothesis ϕ > 0 is
contradicted confirming that indeed ϕ = 0.

• If β′ < 1, a nonzero solution is admitted and (156) becomes the claimed equation for ϕ.

39



Since, for β′ ≥ 1, ϕ vanishes, we need to evaluate the limiting value of SNR Ψ, to which
end we define

α , lim
SNR→∞

SNR Ψ. (157)

For β′ ≤ 1, α diverges. For β′ > 1, and under the hypothesis that 0 < α < ∞, we can
again use (153) to obtain

E

[
1

1 + α Λ′

]
= 1− 1

β′
(158)

which admits a unique nonzero solution.

Having characterized the behavior of Ψ and α for SNR → ∞, we can finally turn to L∞,
which in the large-dimensional regime is obtained as

L∞(Φ) = lim
SNR→∞

log2 SNR− I(SNR,Φ)/n′R
min(β′, 1)

(159)

application of which, together with (152), (156) and (158), yields the claimed expressions.

G Proof of Propositions 6

Since Φ is restricted to being admissible, the null space of ΛT contains the null space of
the optimum P. In order to prove that these null spaces in fact coincide, we need to show
that the null space of the optimum P contains the null space of ΛT.

From (23), and exploiting the unitary invariance of the distribution of W and the eigenspace
commonality of Φ and ΘT, we have that

log2 det
(
I + SNR

nT
Θ

1/2
R WΘ

1/2
T ΦΘ

1/2
T W†Θ1/2

R

)
= log2 det

(
I + SNR

nT
WΛTPW†ΛR

)
(160)

Consider a P whose null space does not contain that of ΛT. We can decompose P =
P1 + P2 with P2 the (non-empty) projection of P over the null space of ΛT. Thus, the null
space of P1 does contain the null space of ΛT. Then,

log2 det
(
I + SNR

nT
WΛTPW†ΛR

)
= log2 det

(
I + SNR

nT
WΛTP1W

†ΛR

)
(161)

while Tr{P1} < Tr{P}. A strictly higher value can be obtained in the left-hand side of
(161), abiding by the trace constraint, by using nT

Tr{P1}P1 rather than P. Hence, no power
allocation can be optimal if its null space does not contain that of ΛT. (Note that this
optimality condition holds at every SNR while the condition that the input covariance be
admissible holds only for SNR →∞.)
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H Proof of Proposition 7

The sought P? is given by the matrix P′ that minimizes the power offset expressions in
Proposition 4 while satisfying the trace constraint in (42). For n′T ≤ n′R, it suffices to
apply Jensen’s inequality to log2 det(P′). For n′T > n′R, P? must minimize the uppermost
expression. This leads to the equivalent maximization in (44).

I Proof of Proposition 9

For nT ≥ nR, we have that S∞ = nR and (11) yields

L∞◦ = log2 nT − 1
nR

log2 det(HH†). (162)

Applying Lemma 3 with proper scaling of the deterministic and random components
and identifying (15), the claimed expression is found. For nT ≤ nR, the same derivation
applies starting from

L∞◦ = log2 nT − 1
nT

log2 det(H†H) (163)

To specialize the result to Corollary 12, it suffices to let φ1 = KnTnR while φi → 0 ∀i 6= 1.

J Proof of Propositions 10 and 11

For nT ≥ nR, from (11) and (76),

L∞ = log2

nT

nI

− log2 e

nR

(
E

[
loge det(HH†)

]−
[
loge det(HIH

†
I)

])
(164)

whose expectations are given in (132), which can in turn be expanded using (136). For
nT < nR,

L∞ = log2

nT

nI

− log2 e

nT

E

[
loge det

(
H†

(
HIH

†
I

)−1

H

)]
(165)

whose expectation is given by Lemma 4. Blending (164) and (165), Proposition 10 is
found.

In turn, defining

Σ , HIHI

nI

, (166)

the expressions in Proposition 11 can be obtained from those in Proposition 5 by recogniz-
ing that Σ−1 plays the role of a receive correlation matrix.11 Hence, it suffices to specialize

11The fact that Σ is random becomes asymptotically immaterial as the empirical distribution of its eigen-
values converges to a deterministic function.
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Proposition 5 with Λ′ = 1 and with Λ′R replaced by another random variable, ΛΣ−1 , whose
distribution of equals that of an inverse Wishart matrix. This distribution satisfies [14]

E [log2 ΛΣ−1 ] = (βI − 1) log2

(
1− 1

βI

)
+ log2 e (167)

E

[
1

1 +
ΛΣ−1

ϕ

]
=

βI

4 ϕ
F

(
βI,

ϕ

βI

)
(168)

E

[
log2

(
1 +

ϕ

ΛΣ−1

)]
= log2

(
1 + ϕ− 1

4
F

(
ϕ

βI

, βI

))
+ βI log2

(
1 +

ϕ

βI

− 1

4
F

(
ϕ

βI

, βI

))

− βI

4ϕ
F

(
ϕ

βI

, βI

)
log2 e (169)

where

F(x, z) =

(√
x(1 +

√
z)2 + 1−

√
x(1−√z)2 + 1

)2

(170)

Using these identities, the claimed closed-form expressions emerge from Proposition 5.
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[8] S. Shamai and S. Verdú, “The impact of frequency-flat fading on the spectral efficiency of
CDMA,” IEEE Trans. on Inform. Theory, vol. 47, no. 5, pp. 1302–1327, May 2001.

[9] W. C. Y. Lee, “Estimate of channel capacity in Rayleigh fading environments,” IEEE Trans.
Veh. Technol., vol. 39, pp. 187–189, Aug. 1990.

[10] A. M. Sengupta and P. P. Mitra, “Capacity of multivariate channels with multiplicative
noise: I. Random matrix techniques and large-N expansions for full transfer matrices,” LANL
arXiv:physics/0010081, Oct. 2000.
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[14] A. M. Tulino and S. Verdú, “Random matrix theory and wireless communications,” Founda-
tions and Trends in Communications and Information Theory, vol. 1, no. 1, pp. 1–182, 2004.

[15] E. Jorswieck and H. Boche, “Optimal power transmission with imperfect channel state infor-
mation at the transmit antenna array,” Wireless Personal Communications, vol. 27, pp. 33–56,
Oct. 2003.
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