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Abstract

In a MIMO layered architecture, several codewords are transmitted from a multiplicity of

antennas. Although the spectral efficiency is maximized if the rates of these codewords are

separately controlled, the feedback rate within the link adaptation loop is reduced if they are

constrained to be identical. This poses a direct tradeoff between performance and feedback

overhead. This paper provides analytical expressions that quantify the difference in spectral

efficiency between both approaches for arbitrary numbers of antennas. Specifically, the char-

acterization takes place in the realm of the low- and high-power regimes via expansions that

are shown to have a wide range of validity.

In addition, the possibility of adjusting the transmit power of each codeword individually

is considered as an alternative to the separate control of their rates. Power allocation, however,

turns out to be inferior to rate control within the context of this problem.
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I Introduction

The layered architecture is an enticing approach to MIMO (multiple-input multiple-output)

communication [1]. At the transmitter, it elicits a very modular structure that accommo-

dates a standard scalar code behind each of the antennas (cf. Fig. 1) while, at the receiver,

it enables successive decoding strategies. These features, however, come at the expense of

an added burden on the link adaptation loop if the rates of the codewords transmitted from

each antenna are to be separately controlled. This added burden can be sidestepped by

equating the rates of all the codewords, which lowers the spectral efficiency but renders a

link adaptation loop comparable to that of a single-codeword architecture. There is thus a

direct tradeoff between spectral efficiency and feedback overhead.

In fact, the layered architecture was initially popularized (under the name Vertical BLAST

in its uncoded form [2], and Horizontal BLAST in its coded incarnation [3]) with equal-

rate codewords. Drawing parallels with the multiple-access channel [4, 5], which is an

isomorphic problem, it was subsequently recognized that the layered architecture becomes

capacity-achieving when the rate of each codeword is separately controlled [6]–[13]. Under

the term PARC (per-antenna rate control), this architecture and precoded variants thereof

have been discussed in various standardization fora and adopted for single-user MIMO

transmission in systems such as 3GPP UMTS [14] and LTE (long-term evolution) [15]. The

layered architecture is also one of the MIMO options in IEEE 802.16 WiMAX [16]. The

tradeoff between spectral efficiency and feedback overhead is a central issue in these de-

signs, and various compromises have been formulated [17, 18]. (In LTE, for example, only

2 rate-controlled codewords are transmitted when 4 transmit antennas are available [15].)

This paper presents compact analytical expressions that quantify the loss in spectral ef-

ficiency, relative to PARC, when the rates of all the codewords are constrained to being

equal. The analysis is conducted in the low- and high-power regimes and the resulting ex-

pressions characterize the key performance measures therein. (Although, for intermediate

power levels, it appears inevitable to have to resort to numerical computations, the transi-

tion between the low- and high-power regimes is fairly swift.) These expressions are meant

to facilitate the evaluation of the tradeoff between spectral efficiency and feedback over-

head, for arbitrary numbers of antennas, in a setting representative of many contemporary
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wireless systems.

II Channel Model

Considering—for the sake of exposition—an OFDM system, the basic baseband MIMO

model on a given tone is

y =
√

g Hx + n (1)

where x and y are the transmit and receive vectors with dimensions nT and nR, respectively,

which are the number of transmit and receive antennas. In turn, n is white Gaussian noise

with spectral density N0 = E[‖n‖2]/nR. The transmit power, P , and the bandwidth, B,

satisfy P/B = E[‖x‖2] and we can define a normalized energy per symbol at the receiver

SNR = g
P/B

N0

. (2)

The channel is represented by the nR × nT random matrix
√

g H, where the constant g rep-

resents the average channel gain while the entries of H are unit-variance complex Gaussian

scalars. The receiver tracks H instantaneously by means of reference symbols inserted pe-

riodically in time and frequency and, through the link adaptation loop, controls the rate of

one or all the codewords.1

We further assume the entries of H to be IID (independent and identically distributed), in

accordance with a desirable scenario for single-user MIMO transmission. (Some comments

on antenna correlation are put forth in Section VI.) It follows that no precoding is necessary,

i.e., each codeword can be mapped directly to a transmit antenna [19].

III Performance Measures

The achievable rate R (bits/s) and the bandwidth B satisfy

R/B = Ī(SNR) (3)

1The overhead associated with such reference symbols is not explicitly accounted for.
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where Ī(SNR) denotes the ergodic spectral efficiency (bits/s/Hz).2 To evaluate the tradeoffs

between P , R and B, it is sometimes convenient to express the spectral efficiency, not as

function of SNR but rather as function of the normalized energy per bit [21]. At the receiver,

specifically,
Er

b

N0

=
SNR

Ī(SNR)
(4)

from which we can express Ī
(

Er
b

N0

)
.3

A Low-Power Regime

Denoting by Er
b

N0 min
the minimum energy per bit required for error-free communication and

by S0 the slope therein in bits/s/Hz/(3 dB), the low-power spectral efficiency expands as

[21]

Ī
(

Er
b

N0

)
= S0

Er
b

N0
|dB − Er

b

N0 min
|dB

3 dB
+ ε (5)

where z|dB = 10 log10 z while ε is a lower-order term. Using (4), we can also relate the

spectral efficiency with SNR via

SNR|dB =
Ī
S0

3 dB + 10 log10 Ī +

(
Er

b

N0 min

)
|dB + o(Ī). (6)

The two key performance measures at low SNR are thus Er
b

N0 min
and S0.

B High-Power Regime

At high SNR, the spectral efficiency usually behaves as [22]

Ī(SNR) = S∞

(
SNR|dB

3 dB
− L∞

)
+ o(1) (7)

2In most modern wireless systems, codewords are interleaved over large swaths of bandwidth and over

multiple H-ARQ (hybrid automatic repeat request) rounds suitably spaced in time. Altogether, the frequency

and time selectivity of the channel that underlies each codeword is large enough to justify the adoption of an

ergodic model altogether [20].
3Note the slight abuse of notation in indicating by Ī(·) distinct functions of SNR and of Er

b

N0
.
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where S∞ denotes the high-power slope in bits/s/Hz/(3 dB) while L∞ represents the high-

SNR power offset, in 3-dB units, with respect to an unfaded scalar channel.

To relate the high-power spectral efficiency with Er
b

N0
, we can again use (4) to obtain [22]

Er
b

N0

|dB =

( Ī
S∞

+ L∞
)

3 dB− 10 log10 Ī + o(1). (8)

The two key performance measures at high SNR are thus S∞, which represents the slope in

terms of both SNR and Er
b

N0
in 3-dB units, and L∞.

IV PARC v. H-BLAST

Let the receiver decode the codewords sequentially in an arbitrary order given by the index

j.4 With an MMSE (minimum mean-square error) filter applied to whiten the interference

from the other yet-to-be-decoded codewords, the spectral efficiency supported by code-

word j is then [4, 6]

Īj = E

[
log2

(
1 + h†j

(
HjH

†
j +

nT

SNR
I
)−1

hj

)]
(9)

where hj is the jth column of H while Hj=[hj+1 hj+2 . . . hnT
] has dimensions nR× (nT− j).

Rather than using (9), however, it is often more convenient to express Īj as [7]

Īj = E

[
log2 det

(
I +

SNR

nT

Hj−1H
†
j−1

)]
− E

[
log2 det

(
I +

SNR

nT

HjH
†
j

)]
. (10)

With PARC, the rate of each codeword is separately controlled and the aggregate spectral

efficiency is [4, 6]

ĪPARC(SNR) =

nT∑
j=1

Īj (11)

= E

[
log2 det

(
I +

SNR

nT

HH†
)]

(12)

4In contrast with non-ergodic settings, where the decoding order may have an impact even in IID channels

[23], in our setting it is immaterial to PARC.
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which equals the capacity of the channel. Invoking the closed-form expression for (12) given

in [24],

ĪPARC(SNR) = log2(e) enT/SNR
m−1∑
i=0

i∑
j=0

2j∑

`=0

[(
2i− 2j

i− j

)(
2j + 2n− 2m

2j − `

)

· (−1)` (2j)! (n−m + `)!

22i−` j! `! (n−m + j)!

n−m+`∑
q=0

Eq+1

( nT

SNR

)]
(13)

where

m = min(nT, nR) (14)

n = max(nT, nR). (15)

and Eq(·) is the exponential integral of order q,

Eq(ζ) =

∫ ∞

1

t−qe−ζtdt. (16)

With the rate of all codewords constrained to being identical, on the other hand, the aggre-

gate H-BLAST spectral efficiency is

ĪH−BL(SNR) = nT min
j

{Īj

}
(17)

which, using (10) and the right-hand side of (13) with a proper choice of nT and nR, can also

be computed in closed form.

Although ĪPARC(SNR) ≥ ĪH−BL(SNR), achieving the former requires feeding back nT times as

many coefficients. The expressions we will furnish next provide insights into the difference

between these spectral efficiencies.

A Low-Power Regime

PARC is capacity-achieving and its performance measures are well established. The low-

power performance measures are [21]

Er
b

N0 min

=
1

log2 e
(18)

S0 =
2 nTnR

nT + nR

(19)
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where (1/ log2 e)|dB = −1.59.

Proposition 1 For H-BLAST in a Rayleigh-faded spatially IID channel,

Er
b

N0 min

=
1

log2 e
(20)

S0 =
2 nTnR

2 nT + nR − 1
(21)

Proof: See Appendix A.

Shown in Figs. 2 and 3 are the low-power expansions for PARC and H-BLAST with, respec-

tively, nT = nR = 4 and nT = 4, nR = 6. Also shown are the corresponding exact values

obtained via (13), which are in close agreement with the expansions for a wide range of

spectral efficiencies.

Since Er
b

N0 min
is unchanged, the suboptimality of H-BLAST in this regime arises as a dimin-

ished slope. The ratio between the slopes, therefore, directly measures the increase in the

bandwidth required to achieve a certain rate with a given power, i.e.,

BH−BL

BPARC
≈ 2 nT + nR − 1

nT + nR

. (22)

Example 1 For nT = nR = 4, as in Fig. 2, H-BLAST requires about 37.5% more bandwidth than

PARC in the low-power regime. For nT = 4, nR = 6, as in Fig. 3, the increase is about 30%.

The bandwidth penalty is largest for nT = nR and it vanishes as nR/nT grows large. For

nT = nR = n, it approaches 50% with growing n.

The increase in power required by H-BLAST to attain a rate R with bandwidth B, in turn,

can be formulated from (6) and Proposition 1 as

PH−BL

PPARC
|dB ≈ nT − 1

2 nTnR

R

B
3 dB (23)

Example 2 For nT = nR = 4, achieving R/B = 2 bits/s/Hz with H-BLAST requires 0.56 dB more

power than with PARC.

The rate loss with given power and bandwidth can also be assessed from (6), (19) and

Proposition 1.
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B High-Power Regime

PARC conforms to the usual high-power behavior in (7) irrespective of the relative values

of nT and nR and, since H is full rank with probability 1, the high-power slope is S∞ =

min(nT, nR). The power offset, in turn, is

L∞ = log2 nT +

(
γ −

n−m∑

`=1

1
`
− n

m

n∑

`=n−m+1

1
`
+ 1

)
log2 e (24)

where γ = 0.5772 is the Euler-Mascheroni constant whereas m and n are as defined in (14).

H-BLAST, on the other hand, exhibits markedly different high-power behaviors depending

on the relative values of nT and nR. For nT > nR, the spectral efficiency is bounded for SNR →
∞. In essence, the first codeword to be decoded is overwhelmed by interference that the

MMSE filter, short of spatial dimensions, is unable to reject. This limitation, unnoticed when

the noise dominates (i.e., at low SNR), becomes acute as the SNR grows and the interference

becomes dominant.

Proposition 2 Consider H-BLAST in a Rayleigh-faded spatially IID channel with nT > nR. For

large SNR,

ĪH−BL(SNR) =

nR∑

`=1

nT

nT − `
log2 e + o(1) (25)

and hence S∞ = 0.

Proof: See Appendix B.

It is therefore clearly undesirable to operate H-BLAST with nT > nR beyond the low-power

regime.

The situation is radically different for nT ≤ nR. Once the receiver has sufficient dimensional-

ity, the spectral efficiency grows as in (7) with S∞ = nT. The suboptimality is then mirrored

in the power offset.

Proposition 2 is thus seen to quantify a notion that is, qualitatively speaking, broadly un-

derstood.
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Proposition 3 For H-BLAST in a Rayleigh-faded spatially IID channel with nT ≤ nR, the spectral

efficiency behaves as (7) with S∞ = nT and with

L∞ = log2 nT +

(
γ −

nR−nT∑

`=1

1
`

)
log2 e (26)

Proof: See Appendix C.

Shown in Figs. 4 and 5 are the high-power expansions for PARC and H-BLAST with, re-

spectively, nT = nR = 4 and nT = 4, nR = 6. Also shown are the corresponding exact values

obtained via (13), which are in close agreement beyond some reasonable SNR levels.

Since S∞ is unchanged, the suboptimality of H-BLAST in this regime adopts the form of

an increased offset. Such increase immediately measures the additional power required to

support a given rate R with fixed bandwidth B, i.e.,

PH−BL

PPARC
|dB ≈ log2(e)

(
nR

nT

nR∑

`=nR−nT+1

1
`
− 1

)
3 dB. (27)

Example 3 For nT = nR = 4, as in Fig. 4, H-BLAST requires 4.7 dB more power in the high-power

regime. For nT = 4 and nR = 6, as in Fig. 5, the increase is 1.85 dB.

Using the large-n asymptote [25]

n∑

`=1

1

`
= loge n + γ +O(1/n) (28)

it is found that, for nT = nR = n and growing n, the power penalty in H-BLAST with respect

to PARC approaches
PH−BL

PPARC
|dB ≈ (log2 n− (1− γ) log2 e) 3 dB. (29)

For growing nR/nT, on the other hand, the power penalty vanishes.

The increase in bandwidth with fixed power and rate, and the rate loss with fixed power

and bandwidth, can also be asserted by elaborating on Proposition 3 using (8).

9



V Optimum Power Allocation for H-BLAST

In our ergodic setting, the suboptimality of H-BLAST stems from the constraint of oper-

ating all the codewords at the same rate regardless of the position of each one in the de-

coding process, i.e., regardless of the distinct level of interference from other codewords

suffered by each one. In contrast, PARC adjusts the codeword rates appropriately. A plau-

sible alternative to the control of the rates is the allocation of unequal transmit powers to

the codewords, subject to the applicable power constraint. Intuitively, the performance of

H-BLAST is likely to improve if the codewords that are to be decoded early are allocated

more power than those that come later in the process. (For PARC, in contrast, the optimum

power allocation in a spatially IID channel is uniform [19] and thus there is nothing to be

gained.)

Deferring to Section VI the discussion of the feedback and implementation issues, we next

concentrate on determining the optimum power allocation for H-BLAST and on evaluat-

ing the corresponding spectral efficiency. The analytical tools that we apply are the same

utilized thus far.

When the power allocation is not uniform, (9) generalizes to

Īj = E

[
log2

(
1 + pjh

†
j

(
HjPjH

†
j +

nT

SNR
I
)−1

hj

)]
(30)

where pj is the normalized power allocated to codeword j and Pj = diag{pj+1, . . . , pnT
}.

The complete power allocation is described by P = diag{p1, . . . , pnT
}, which, under the

normalization we have adopted, satisfies Tr{P} = nT. The spectral efficiency of H-BLAST

is then

ĪH−BL(SNR) = nT max
P:Tr{P}=nT

min
j

{Īj(SNR)
}

(31)

and the optimum power allocation, P? = diag{p?
1, . . . , p

?
nT
}, is the argument of this optimiza-

tion. As intuition would have it, good power allocation solutions to this max-min problem

will seek to equalize the rates supported by the various codewords.
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A Low-Power Regime

At low SNR, the spectral efficiency is limited by noise rather than by interference between

codewords. Since the goal of the power allocation for H-BLAST is precisely to balance such

interference, one would expect little if any advantage in departing from a uniform allocation

in this regime. Indeed, this is the case.

Proposition 4 For SNR → 0, the optimum power allocation for H-BLAST approaches P? = I.

Proof: See Appendix D.

The low-power analysis in Section IV is therefore still applicable.

B High-Power Regime

At high SNR, in contrast, interference dominates the spectral efficiency and a proper power

allocation can lessen the interference that codewords decoded early suffer from those de-

coded later.

Proposition 5 Let nT ≤ nR. For SNR → ∞, the optimum power allocation for H-BLAST in a

spatially IID channel approaches, in 3-dB units,

log2 p?
j = − log2

(
1

nT

nT∑
u=1

exp

{
−
nR−nT+u−1∑

`=1

1
`

})
− log2(e)

nR−nT+j−1∑

`=1

1
`

(32)

for j = 1, . . . , nT. The corresponding spectral efficiency behaves as (7) with S∞ = nT and with

L∞ = γ log2 e + log2

(
nT∑
u=1

exp

{
−
nR−nT+u−1∑

`=1

1
`

})
. (33)

Proof: See Appendix E.

Presented in Figs. 6 are the exact spectral efficiencies of PARC and H-BLAST with nT = nR =

4 and uniform power allocations. In the same plot, we find the exact spectral efficiency of

H-BLAST with the optimum power allocation given in Proposition 5. Notice how, as SNR
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grows, such power allocation becomes progressively more effective and the gap with PARC

shrinks towards its asymptotic value.

Example 4 Recall that, for nT = nR = 4, H-BLAST with a uniform power allocation requires

4.7 dB more power than PARC in the high-power regime (cf. Example 3). From Proposition 5, the

optimum transmit powers are

p?
1 = 2.28

p?
2 = 0.84

p?
3 = 0.51

p?
4 = 0.37.

and the corresponding deficit dwindles to 1.1 dB (cf. Fig. 6).

Although the power offset of H-BLAST can be reduced significantly by optimizing the

power allocation, as the above example illustrates, it always remains larger than the one

for PARC given in (24). (Only for nR/nT →∞ do they approach the same value.)

VI Conclusion

The analysis presented in this paper sets the stage for simple evaluations of the tradeoff be-

tween the PARC and H-BLAST layered architectures in an ergodic setting. Although OFDM

signaling was invoked for the sake of exposition, the analysis holds for other waveforms as

well.

The spectral efficiency shortfall of H-BLAST, which is largest for nT = nR and diminishes

with growing nR/nT, comes in exchange for reduced feedback within the link adaptation

loop. Take an exemplary configuration with nT = nR = 4. H-BLAST incurs a 37% increase

in bandwidth at low SNR and a 4.7-dB increase in power at high SNR with respect to PARC,

but H-BLAST requires feeding back only 25% of the coefficients needed by PARC. (Depend-

ing on the span of the codewords and on the number of bits used to quantize their rates,

this converts into a specific difference in the respective feedback bit rates.) For nT and nR

sufficiently similar, the advantage of PARC appears to warrant this additional feedback.
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We have also seen that optimizing the transmit powers in H-BLAST, while helpful, cannot

close the gap with PARC (except for nR/nT →∞). Rate feedback is thus more effective than

power feedback in this case.

It is worth noting that, in a true ergodic setting, feedback would theoretically not be nec-

essary in the first place. The codeword rates could be set on the basis of only the channel

statistics and the agreed-upon decoding order at the receiver. Actual systems, however,

must be robust and designed for general channel conditions. Hence, while the ergodic set-

ting is representative of many scenarios of interest, it cannot be used as an argument to

forgo the link adaptation loop.

For channels exhibiting substantial antenna correlation, the analysis is certain to become

more involved. Nonetheless, the low- and high-power spectral efficiency of PARC in er-

godic channels with antenna correlations is well characterized [26, 27] and there is reason-

able hope that the same tools could serve to assert the spectral efficiency of H-BLAST. In

fact, if the signaling takes place along the eigenvectors of E[H†H], transmit antenna corre-

lations are isomorphic with non-uniform power allocations [28, 29] and thus the analysis

in Section V can be leveraged directly. Also, exact characterizations for various correlation

structures of interest have been put forth (e.g., [30]–[33]). Note that, in addition to impact-

ing the spectral efficiency, correlation impacts the feedback load since it opens the door to

vector quantization of the channel coefficients.
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Appendices

A Proof of Proposition 1

In an ergodic setting, the codeword that dominates the spectral efficiency in (17) is the first

to be decoded, i.e., ĪH−BL(SNR) = nTĪ1(SNR) because codewords j = 2, . . . , nT suffer from

a reduced level of interference. Since all codewords must be encoded at the same rate in

H-BLAST, they must all share the rate of that first-decoded one. Thus, using (10) and (17),

ĪH−BL(SNR) = nTE

[
log2 det

(
I +

SNR

nT

HH†
)]

− nTE

[
log2 det

(
I +

SNR

nT

H1H
†
1

)]
(34)

where, recall, H1 = [h2 h3 . . .hnT
]. In conjunction with

d

du
loge det(I + uA)|u=0 = Tr{A}, (35)

(34) yields

˙̄IH−BL(0) =
dĪH−BL(SNR)

dSNR
|SNR=0 (36)

= nR log2 e, (37)

as in PARC. Similarly, using (34) and

d2

du2
loge det(I + uA)|u=0 = −Tr{A2} (38)

we find

¨̄IH−BL(0) =
d2ĪH−BL(SNR)

dSNR2
|SNR=0 (39)

= −nR (2 nT + nR − 1)

nT

log2 e. (40)

Applying [21]

Er
b

N0 min

=
1/g

˙̄IH−BL(0)
(41)

S0 = − 2

log2 e

[ ˙̄IH−BL(0)]2

¨̄IH−BL(0)
, (42)

the expressions in the proposition are readily obtained.

14



B Proof of Proposition 2

From (34), canceling a factor log2 det(SNR/nT · I) from either expectation,

ĪH−BL(SNR) = nTE
[
log2 det

(
HH† +

nT

SNR
I
)]
− nTE

[
log2 det

(
H1H

†
1 +

nT

SNR
I
)]

(43)

= nTE
[
log2 det

(
HH†)]− nTE

[
log2 det

(
H1H

†
1

)]
+ o(1) (44)

= nT

nR−1∑

`=0

1

nT − `− 1
log2 e + o(1) (45)

where we have used [34]

E
[
loge det

(
WW†)] = −nγ +

n−1∑

`=0

m−`−1∑
q=1

1

q
(46)

for an n×m matrix W with IID zero-mean unit-variance complex Gaussian random entries

(m ≥ n). Note that H is nR × nT while H1 is nR × (nT − 1). By shifting the summation index

in (45), the claimed expression is finally obtained.

C Proof of Proposition 3

Rearranging (34) in a form that is more convenient for nT ≤ nR,

ĪH−BL(SNR) = nTE

[
log2 det

(
I +

SNR

nT

H†H
)]

− nTE

[
log2 det

(
I +

SNR

nT

H†
1H1

)]
. (47)

The corresponding power offset is then obtained as

L∞ = lim
SNR→∞

(
log2 SNR− ĪH−BL(SNR)

S∞

)
(48)

= log2 nT − E
[
log2 det

(
H†H

)]
+ E

[
log2 det

(
H†

1H1

)]
(49)

where, in (49), we have used S∞ = nT. Application of (46) to the two expectations leads to

the claimed expression. Note, as in Appendix B, that H is nR× nT while H1 is nR× (nT− 1).
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D Proof of Proposition 4

Rewriting (30) in a more convenient form, as done in (34) for the case of a uniform power

allocation,

Īj(SNR) = E

[
log2 det

(
I +

SNR

nT

Hj−1Pj−1H
†
j−1

)]

−E

[
log2 det

(
I +

SNR

nT

HjPjH
†
j

)]
(50)

which must be plugged into (31). While, with a uniform power allocation, the limiting

codeword is always the first one to be decoded, that need not be the case when the powers

are optimized and thus the inner minimization no longer trivially returns j = 1.

From (41), only the first-order term of ĪH−BL(SNR) is relevant in terms of Er
b

N0
. Applying (35),

Er
b

N0 min
is minimized by

P? = arg max
P:Tr{P}=nT

min
j
{pjnR log2 e} (51)

= I. (52)

The slope S0, on the other hand, is in general maximized by a non-uniform power allocation.

For sufficiently low SNR, however, Er
b

N0 min
dominates the behavior. The more that the power

allocation departs from uniform to improve S0, the higher the price paid in terms of Er
b

N0 min
.

E Proof of Proposition 5

With nT ≤ nR, the slope S∞ is sure to equal nT if only pj > 0, j = 1, . . . , nT. Under that

condition, we may focus exclusively on L∞.

Suppose that the jth codeword is the one limiting the overall spectral efficiency. From (48)

and (50),

L∞ = log2 nT − log2 det(Pj−1) + log2 det(Pj)

−E
[
log2 det(H†

j−1Hj−1)
]

+ E
[
log2 det(H†

jHj)
]

(53)
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Exploiting the diagonal forms of Pj−1 and Pj and using (46) to evaluate the expectations,

L∞ = log2 nT − log2 pj +

(
γ −

nR−nT+j−1∑

`=1

1
`

)
log2 e. (54)

Because of the max-min optimization in (31), the optimum power allocation is the one

that results in the same L∞ for every j ∈ (1, . . . , nT). Enforcing that condition, as well as

the power constraint
∑nT

j=1 pj = nT, the optimum power allocation and the corresponding

power offset are obtained after a modicum of algebra.
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Figure 1: MIMO layered architecture transmitter with nT encoders, each feeding an antenna.
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Figure 2: Low-power spectral efficiencies of PARC and H-BLAST with nT = nR = 4. In

solid, exact values. In dashed, low-power expansions with the performance measures in

(18)-(19) and in Proposition 1, respectively.
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Figure 3: Low-power spectral efficiencies of PARC and H-BLAST with nT = 4, nR = 6. In

solid, exact values. In dashed, low-power expansions with the performance measures in

(18)-(19) and in Proposition 1, respectively.
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Figure 4: High-power spectral efficiencies of PARC and H-BLAST with nT = nR = 4. In

solid, exact values. In dashed, high-power expansions with S∞ = 4 and with the power

offsets in (24) and in Proposition 3, respectively.
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Figure 5: High-power spectral efficiencies of PARC and H-BLAST with nT = 4, nR = 6. In

solid, exact values. In dashed, high-power expansions with S∞ = 4 and with the power

offsets in (24) and in Proposition 3, respectively.
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Figure 6: Exact high-power spectral efficiencies of PARC and H-BLAST with nT = nR = 4

and uniform power allocations. Also shown is the corresponding spectral efficiency for

H-BLAST, likewise exact, with the power allocation given in Proposition 5.
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