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Summary

The space and time discretization inherent to all FDTD schemes
introduce non-physical dispersion errors, i.e. deviations of
the speed of sound from the theoretical value predicted by
the governing Euler differential equations. A general method-
ology for computing this dispersion error via straightfor-
ward numerical simulations of the FDTD schemes is pre-
sented. The method is shown to provide remarkable ac-
curacies of the order of1/1000 in a wide variety of two-
dimensional finite difference schemes.

1. INTRODUCTION

Finite-difference time-domain (FDTD) [1] methods provide
a simple and accurate way to simulate a wide range of acous-
tic wave propagation problems: room acoustics analysis,[2,
3] sound scattering from rough surfaces,[4] ultrasounds in
biomedical applications, [5] etc.

Over the last decade, much effort has been devoted to
improving the accuracy of the FDTD simulations. One im-
portant issue common to all FDTD-based algorithms is that
they cause a nonphysical dispersion of the simulated waves [6]:
due to the discretization of the computational mesh, the ac-
tual wave propagation velocity (aka numerical speed of sound,
or cnum ) is different from the theoretical one,c, expected
from the governing differential equation of the acoustic field.

A convenient way to parameterize this error is to ex-
press the ratio between both velocities in terms of the vari-
ous parameters relevant to the problem. In this paper we fo-
cus on two-dimensional wave propagation in square lattices
(∆x = ∆y), a case for which it is easy to show that the ra-
tio of velocities,c/cnum, can be expressed as a function of
only three parameters: the number of cells per wavelenght,

Nλ = λ/∆x; the angleθ between the direction of propa-
gation and one of the lattice axis; and the Courant stability
number,S = c∆t/∆x.

In some FDTD schemes, the velocities ratio can be well
estimated via a simple algebraic manipulation of the FDTD
equations, commonly known as Von-Newmann analysis.[1]
However, thisanalytic procedure yields a set of implicit
equations that, for non-simple schemes, often become long
and cumbersome, making it an impractical path towards il-
lustrating the dependence ofc/cnum on the aforementioned
parameters. For this reason, it is important to have a means
of extracting the velocities ratio from actual simulations,
without the need to rely on a priori considerations.

In this paper we present a general numerical method-
ology for computingc/cnum via simulations of any FDTD
algorithm in 2D. In the method presented, a numerical plane
wave is employed to validate dispersion relations as origi-
nally proposed by An Ping Zhao and Riku M. Mäkinen [7].
In [7] the authors show that a plane wave is more suitable
than the commonly used point source [8, 9], for the purpose
of verifying dispersion relations numerically. Our proposal
allow for a statistical determination of the numerical speed
of sound and is suitable for any FDTD scheme and for rea-
sonable low values of the number of cells per wavelength.

We apply our methodology to qualitatively different types
of FDTD schemes: the original algorithm by K.S. Yee [10]
and its recent extensions;[11] the acoustic version of the
MacCormack scheme;[12] and the recently developed pseu-
dospectral techniques (PSTD).[13]

The results obtained prove that the methodology pro-
vides very accurate computations ofc/cnum even for low
cells per wavelength. This, together with the fact that it is
easily generalizable to 3D, makes it a suitable technique to
faithfully research on numerical dispersion errors in the im-
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Fig. 1. Upper row: schematic representation of wavefronts propagating within the mesh, at a 26 degrees angle with respect to
the axes. Lower row: the result of sampling the pressure fieldalong a line parallel to the propagation direction. Left column:
only points directly over such line are considered, leadingto a small density of sampling points (square dots). Right column:
all other mesh points are projected, leading to a larger sampling density.

plementation of FDTD algorithms in acoustic problems.
The paper is organized as follows: section 2 introduces

general methodology; section 3 discusses the results ob-
tained with different FDTD and PSTD methods; finally, sec-
tion 4 contains the conclusions.

2. METHODOLOGY

In this section, we present a general methodology for com-
puting the numerical speed of sound in two-dimensional
FDTD schemes. The method consists on creating plane
waves traveling in different orientations and following their
propagation throughout the mesh. The plane waves are cre-
ated by exciting a set of mesh points with a time-varying si-
nusoidal pressure signalpn

i,j = p0 sin(2πνn∆t). Here,∆t
is the time discretization interval,n is the time step,(i, j)
are the two-dimensional spacial coordinates andν the fre-
quency of the plane wave. We always setp0 = 100 Pa for
illustrative purposes. The orientation of the plane waves,i.e.
the angleθ between the wavefront and the x-axis, is fixed by

selecting the excited points to be those for whichtan θ = j
i .

This, in turn, implies that the wavefront propagates with ve-
locity parallel to the vector(j,−i).

In order to avoid numerical reflections and to obtain ac-
curate results, we have considered huge lattices1, with large
Perfectly Matched Layers [14] (PML) at the boundaries. We
have chosen PML absorbing boundary conditions not only
for their good performance [15] but also for preserving the
numerical stability of the algorithms. Finally, we measure
the pressure in a region2 near the center of the mesh at a
time sufficiently short to ensure stationarity. Considering
only the pressure at a set of points along the direction of
propagation(j,−i) as shown in figure 1 (upper-left hand
corner) we obtain a snapshot like the one in figure 1 (lower-
left hand corner). However, it is worth emphasizing that for
most angles, the number of points per wavelength obtained
by the previous procedure is very small. One simple way
to greatly improve the accuracy is to project the pressure

1Each dimension is about one hundred times the wavelength
2The length is about five times the wavelength
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information of other mesh points to the line(j,−i) perpen-
dicular to the wave front, figure 1 (upper-right hand cor-
ner). This leads to a substantial increase on the density of
points per wavelength, as observed in figure 1 (lower-right
hand corner), and, therefore, to a reduction of the error in
cnum associated to the fit.

Finally, by fitting a simple sinusoidal function

p = p0 sin(knumx + φ) , (1)

we can easily obtain the numerical wavelength, and there-
fore the numerical speed of sound,

cnum =
2πν

knum
. (2)

3. NUMERICAL VALIDATION

3.1. The Yee Algorithm

The most important basic formulation of the Yee algorithm
[10] applied to acoustics was presented in 1994,[2] and fur-
ther developed for room acoustics in 1995.[3] The Perfectly
Matched Layer method for the Yee algorithm was presented
also in 1995 [16] for acoustic and elastic modeling.

The scheme is defined on a Cartesian staggered grid
with pressure and particle velocity components located at
interleaved positions. Spatial and temporal derivatives of
the governing partial differential equations are approximated
by central-differences leading to second-order accuracy in
time and space. In two dimensions, the explicit form is

vx|n+1/2
i+1/2,j = vx|n−1/2

i+1/2,j − a1(p|ni+1,j − p|ni,j) ,

vy|n+1/2
i,j+1/2 = vy|n−1/2

i,j+1/2 − a1(p|ni,j+1 − p|ni,j) ,

p|n+1
i,j = p|ni,j − a2(vx|n+1/2

i+1/2,j − vx|n+1/2
i−1/2,j

+vy|n+1/2
i,j+1/2 − vy|n+1/2

i,j−1/2) , (3)

where a1 = ∆t
ρ∆x and a2 = ρc2 ∆t

∆x . A standard Von-
Newmann analysis[17] yields the followinganalytic disper-
sion relation

S−2 sin2

(
πS

Nλ

)
= sin2

(
πc

Nλcnum
cos θ

)

+sin2

(
πc

Nλcnum
sin θ

)
, (4)

which, as explained in the introduction, implicitly relates
c/cnum to S, Nλ andθ. A straightforward analysis of (4)
reveals a number of interesting properties:c/cnum tends to
1 in the continuum limit (Nλ → ∞); the scheme is second
order accurate in terms of isotropy;[11] finally, lettingS =
1√
2
, which is the maximum value ofS for this algorithm to

be stable,[2] there is no dispersion error atθ = 45◦.

In order to test our methodology, we compared the val-
ues ofc/cnum obtained from our simulations to those ex-
pected from the analytic equation (4). Figure 2 shows the
comparison in two cases with equalS = 1/

√
2, but differ-

entNλ. The continuous lines are obtained from the analytic
result (2), whereas dots and error bars were obtained with
our methodology after averaging over15 different different
times (snapshots). As it can be seen, the results of the nu-
merical simulations are excellent and the magnitude of error
is of order1/1000 even forNλ = 10 cpw.
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Fig. 2. Analytical (continuous line) and numerical (dots) re-
sults for different angles of propagation in Yee’s algorithm.
Up, Nλ = 10 cpw; down, Nλ = 20 cpw. In both cases
S = 1/

√
2.

3.2. A Family of FDTD algorithms in a staggered grid

In this section, we discuss a family extensions of Yee’s al-
gorithm that improves its accuracy in terms of isotropy.[11]
The spatial derivatives employ a combination of differences
between nearest neighbors and a next-to-nearest neighbors.
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vx|n+1/2
i+1/2,j = vx|n−1/2

i+1/2,j − a1(p|ni+1,j − p|ni−1,j) ,

vy|n+1/2
i,j+1/2 = vy|n−1/2

i,j+1/2 − a1(p|ni,j+1 − p|ni,j−1) ,

p|n+1
i,j = p|ni,j − (1 − α2)a2(vx|n+1/2

i+1/2,j − vx|n+1/2
i−1/2,j

+ vy|n+1/2
i,j+1/2 − vy|n+1/2

i,j−1/2) − α2a2(vx|n+1/2
i+1/2,j+1

+ vx|n+1/2
i+1/2,j−1 − vx|n+1/2

i−1/2,j+1 − vx|n+1/2
i−1/2,j−1

+ vy|n+1/2
i+1,j+1/2 + vy|n+1/2

i−1,j+1/2 − vy|n+1/2
i+1,j−1/2

− vy|n+1/2
i−1,j−1/2) . (5)

Following Wagner et al. conventions,[11] this family of
algorithms is parameterized by a constant,α2, within the
range[0, 1/2]. It turns out that for the particular valueα2 =
1/6, the scheme leads to fourth order accuracy in isotropy;
more specifically,cnum = c + O(∆x6,∆t6). Moreover,
the original scheme by Yee is recovered simply by setting
α2 = 0. The dispersion relation following from a Von-
Newmann analysis reads

S−2 sin2

(
πS

Nλ

)
=

[
1 − α2 + α2 cos

(
2πc sin θ

Nλcnum

)]

× sin2

(
πc cos θ

Nλcnum

)
+

[
1 − α2 + α2 cos

(
2πc cos θ

Nλcnum

)]

× sin2

(
πc sin θ

Nλcnum

)
. (6)

We present the values ofc/cnum obtained applying our
method to this family of algorithms in figure 3. Again,
the continuous lines are derived from the analytic result,
whereas dots and error bars were obtained with our method-
ology after averaging over15 different times. The results
obtained have the same accuracy than for the Yee algorithm
in all cases tested.

3.3. The MacCormack Algorithm

In this section, we apply our methodology to the MacCor-
mack algorithm, which is a two-step explicit method.[17]
We have chosen this scheme for different reasons: on the
one hand, this is a very popular scheme for dealing with
Navier-Stokes equations and its performance for acoustic
simulations have been only recently investigated; on the
other hand, unlike the algorithms studied in the preceding
sections, it uses a centered mesh (i.e. pressure and veloci-
ties are computed at the same points of the mesh).

The numerical scheme is obtained integrating the equations
of motion in two steps.[12] The first step is given by:
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Fig. 3. Analytical (continuous line) and numerical (dots)
results for the family of Yee’s extensions at the maximum
allowed value of S, Nλ = 10 cpw and α2 = 1/4 (up),
α2 = 1/6 (center) and α2 = 1/8 (down).

v̂x|n+1
i,j = vx|ni,j − a1(p|ni+1,j − p|ni,j) ,

v̂y|n+1
i,j = vy|ni,j − a1(p|ni,j+1 − p|ni,j) ,

p̂|n+1
i,j = p|ni,j − a2

[
vx|ni+1,j − vx|ni,j

]

−a2

[
vy|ni,j+1 − vy|ni,j

]
, (7)

and the second step
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vx|n+1
i,j =

1

2

[
vx|ni,j + v̂x|n+1

i,j

]
− a1

2

[
p̂|n+1

i,j − p̂|n+1
i−1,j

]
,

vy|n+1
i,j =

1

2

[
vy|ni,j + v̂y|n+1

i,j

]
− a1

2

[
p̂|n+1

i,j − p̂|n+1
i,j−1

]
,

p|n+1
i,j =

1

2

[
p|ni,j + p̂|n+1

i,j

]
− a2

2

[
v̂x|n+1

i,j − v̂x|n+1
i−1,j

]

−a2

2

[
v̂y|n+1

i,j − v̂y|n+1
i,j−1

]
. (8)

Finally, its analytic dispersion relation is complex enough
to render it almost unusable. In cases like this, our method-
ology presents a simpler and more straightforward way to
study the dispersion error. For the sake of clarity of expo-
sition, we have left the explicit equations of MacCormack’s
dispersion relation for the Appendix.
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Fig. 4. Comparison of analytical (continuous line) and nu-
merical (dots) results for MacCormack’s algorithm, with
Nλ = 30 cpw andS = 1/

√
2.

The comparison with our methodology is presented in
figure 4, where excellent agreement is observed again. As
can be shown in figure 4 we have obtained again accuracies
of the order of 1/1000 averaging only over 15 snapshots.

3.4. PSTD Method

The FDTD methods are a simple, robust and powerful tech-
nique to simulate transient acoustic phenomena. However,
the standard lore indicates that a spatial sampling density
above10 − 15 cells per wave-length is needed to produce
accurate results. This problem becomes even more critical
in large acoustic problems (such as rooms with long rever-
beration times), making it necessary to increase the spatial
sampling rate beyond this range to reduce the cumulative
numerical dispersion error.[1]

PSTD methods improve this situation significantly by
using more refined approximations for spatial derivatives.
For example, those PSTD methods based on Fourier trans-
forms essentially use all the points in a given row of the

mesh to approximate the partial derivative along the row di-
rection. In two dimensions, the explicit form of the PSTD
scheme is

vx|n+1/2
i,j = vx|n−1/2

i,j − ∆t

ρ
F−1

x

(
ι

2πnx

Nx∆x
Fx(p|n:,j)

)
,

vy|n+1/2
i,j = vy|n−1/2

i,j − ∆t

ρ
F−1

y

(
ι

2πny

Ny∆y
Fy(p|ni,:)

)
,

p|n+1
i,j = p|ni,j − ρc2∆tF−1

x

(
ι

2πnx

Nx∆x
Fx(vx|n+1/2

:,j )

)

−ρc2∆tF−1
y

(
ι

2πny

Ny∆y
Fy(vy|n+1/2

i,: )

)
, (9)

whereFµ andF−1
µ denote the Fourier transform over the

µ-axis and its inverse respectively;nx andny are the index
of the Fourier transforms, and the : symbol denotes allµ-
coordinate along the straightline cut through the space lat-
tice. Finally,ι =

√
−1 andNµ are the total grid points over

theµ-axis.
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Fig. 5. Analytical curve (continuous line) compared to nu-
merical simulations (dots). Up: dispersion error versus time
discretizationNT for differentNλ, at a fixed angleθ = 0.
Note the remarkable independence of the results ofNλ.
Down: dispersion error versusNT for different angles, at
fixedNλ = 10 cpw.

A direct consequence of the expression (9) is that the
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stability criterium does not depend onNλ, which may be
set to a value as low as2. Similarly, from a dispersion error
point of view, PSTD methods exhibit a perfectly isotropic
relation,i.e. the ratioc/cnum does not depend on the prop-
agation angleθ. More specifically, for large enough numer-
ical domains:

cnum

c
=

π

NT sin
(

π
NT

) , NT :=
T

∆t
, (10)

whereNT controls the time discretization,T being the pe-
riod of the planar wave. Note that, just like the stability cri-
terium, the dispersion error does not depend on the spatial
discretizationNλ either.
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Fig. 6. Dispersion error versus angle at fixedNλ = 10 cpw,
NT = 50. Note the almost perfect isotropy.

The results of our methodology applied to the Fourier
transform PSTD scheme are compared to the analytical ones
derived from (10) are shown in figures 5 and 6. Once more,
the agreement proves to be excellent in all the situations
studied.

4. CONCLUSIONS

In this letter we have presented a general statistical method-
ology for studying and validating the dispersion error of
generic FDTD algorithms by direct computation of the nu-
merical speed of sound. The procedure is simple but pow-
erful, as it easily generates enough data to obtain computa-
tionally accuracies of the order of1/1000. We have shown
that it applies equally well to a wide variety of qualitatively
different schemes in 2D: FDTD in staggered and non-staggered
meshes, isotropic extensions of FDTD, and pseudospectral
techniques in time domain. We also have shown that the
methodology works excellently even at low values of the
number of cells per wavelength.

Finally, the methodology extends rather straightforwardly
to three-dimensional cubic meshes. To create plane waves,

all that is needed is to excite a whole plane of the 3D mesh.
The normal to the plane corresponds to the propagation di-
rection, which can be used to sample the pressure field as
described in section 2, fit a sinusoidal function, and easily
obtain the behavior ofc/cnum.
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A. DISPERSION RELATION OF THE
MACCORMACK ALGORITHM

In section 3.3 we applied our methodology to the MacCor-
mack algorithm: a two-step explicit method.[17] A standard
Von-Newmann analysis leads to the following dispersion re-
lation:

0 = −1

4
e−ιk∆(cos θ+sin θ)(−1 + eιk∆x cos θ)2(−1

+ eιk∆x sin θ)2S4 +

(
1 − e−ιω∆tS2[−1

+ cos(k∆x cos θ)]

)(
1 − e−ιω∆t + S2[−1

+ cos(k∆x sin θ)]

)(
1 − e−ιω∆tS2[−2 cos(k∆x cos θ)

+ cos(k∆x sin θ)]

)
+ S2 sin2(k∆x cos θ)

[
[1

− e−ιω∆tS2(−1 + cos(k∆x sin θ))] sin(k∆x cos θ)

− 1

2
eιk∆x cos θ(−1 + eιk∆x cos θ)(−1 + eιk∆x sin θ)

× S2 sin(k∆x sin θ)

]
− 1

2
S2 sin(k∆x sin θ)

(
S2

× sin(k∆x cos θ)[−1 + eιk∆x cos θ][−1 + eιk∆x sin θ]

− 2
[
−1 + e−ιω∆t + S2 − S2 cos(k∆x cos θ)

]

× sin(k∆x sin θ)

)
, (11)

whereι =
√
−1 andk is the numerical wavenumber of the

plane waves. The equality of (11) can only be satisfied for
complex values ofk = α + ιβ. The velocity of propaga-
tion of the simulated wave is then related to the real part
of k via cnum = 2πν

α . On the other hand, the imaginary
part ofk corresponds to a (mild) exponential damping of the
plane waves along their propagation in the mesh. Its non-
zero value is due to the fact that the MacCormack scheme
is not perfectly conservative. Note that (11) is a rather com-
plicated implicit equation forcnum.
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