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Statistical Modeling of Bowing Control Applied to
Violin Sound Synthesis
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Abstract—Excitation-continuous music instrument control
patterns are often not explicitly represented in current sound
synthesis techniques when applied to automatic performance.
Both physical model-based and sample-based synthesis paradigms
would benefit from a flexible and accurate instrument control
model, enabling the improvement of naturalness and realism. We
present a framework for modeling bowing control parameters in
violin performance. Nearly non-intrusive sensing techniques allow
for accurate acquisition of relevant timbre-related bowing control
parameter signals. We model the temporal contour of bow velocity,
bow pressing force, and bow-bridge distance as sequences of short
Bézier cubic curve segments. Considering different articulations,
dynamics, and performance contexts, a number of note classes
are defined. Contours of bowing parameters in a performance
database are analyzed at note-level by following a predefined
grammar that dictates characteristics of curve segment sequences
for each of the classes in consideration. As a result, contour
analysis of bowing parameters of each note yields an optimal
representation vector that is sufficient for reconstructing original
contours with significant fidelity. From the resulting representa-
tion vectors, we construct a statistical model based on Gaussian
mixtures suitable for both the analysis and synthesis of bowing
parameter contours. By using the estimated models, synthetic
contours can be generated through a bow planning algorithm able
to reproduce possible constraints caused by the finite length of the
bow. Rendered contours are successfully used in two preliminary
synthesis frameworks: digital waveguide-based bowed string
physical modeling and sample-based spectral-domain synthesis.

Index Terms—Audio systems, Gaussian distributions, gesture
modeling, music, pattern classification, signal synthesis, violin
bowing control.

I. INTRODUCTION

T HE complexity of control in musical instrument perfor-
mance stands out when dealing with excitation-contin-

uous or sustained instruments (e.g., bowed-strings or winds).
In contrast to the case of excitation-instantaneous musical in-
struments (e.g., drums or piano-like instruments), variations of
sound are achieved by continuous modulations of the physical
actions (or controls) directly involved in sound production
mechanisms, i.e., instrumental gestures [1]. Difficulties in
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Fig. 1. Simplified diagram of musical instrument sound production in human
performance. Abstractions made boby physical modeling synthesis and sample-
based synthesis are illustrated.

quantitatively understanding the continuous nature of such
controls [2] have prevented excitation-continuous instrumental
sound synthesis from achieving a greater success.

Fig. 1 shows a simplified diagram of musical instrument
sound production by human performance. In general, a per-
former transforms the sequence of discrete events appearing in
a musical score into the continuous physical actions (or con-
trols) needed for the instrument to produce the desired output
sound. While the important role of the performer appears to
be crucial in musical performance, it is usual to find sound
synthesizers (either based on physical models, or on sample
processing) missing an explicit representation of the control
carried out by the musician.

In particular, the abstraction taking place in physical model-
based synthesis places the focus on the sound production mech-
anisms of the instrument. Even though the flexibility of control
tends to be preserved, the lack of appropriate control parameter
signals represents an important drawback for use in automatic
performance. For the case of sample-based sound synthesis, the
abstraction usually includes the performer by pairing score an-
notations wisound recordings. Although higher sound fidelity
might be achieved (actual sound recordings are used as source
material), flexibility limitations and possible timbre discontinu-
ities often make it difficult to get the feeling of natural perfor-
mance.

Withe aim of improving the naturalness of synthetic sound
in excitation-continuous musical instruments, modeling instru-
mental control patterns should provide a means for abstracting
a proper representation of the performer. Indeed, an explicit
decoupling from the instrument would free instrumental sound
modeling from control-based design constraints that tradition-
ally appear in offline synthesis scenarios (e.g., NoteOn-like
events triggering sound rendering).

The training process in traditional musical instrument per-
formance is based on a technique of continual practice. For
that reason, a learning-by-example approach involving the
acquisition of instrumental gesture parameters appears to be
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more suited for constructing a quantitative model able to emu-
late control habits in excitation-continuous musical instrument
performance. This paper addresses bowing control in violin
performance. A statistical model is first constructed making use
of instrumental gesture data acquired from real performance,
and then applied for rendering synthetic bowing controls from
written scores. Generated bowing parameter signals are finally
used for driving sound synthesis.

A. Analysis of Bowing Control Parameters

Because of the complex and continuous nature of physical
actions involved in the control of bowed-string instruments, the
acquisition and analysis of bowed-string instrumental gestures
has been an active and challenging topic of study for several
years, and has led to diverse successful approaches.

In the work presented by Askenfelt [3], [4], a thin resistance
wire is inserted into the bow hair in conjunction wielectrified
strings in order to detect the contact position. For the bow
pressure, four strain gages (two at the tip and two at the frog)
are used. Later, Paradiso and Gershenfeld [5] measured bow
transversal position by means of oscillators driving antennas
(electric field sensing), and bow pressure by using a force-sen-
sitive resistor below the forefinger. Recent implementations
resulted in less intrusive systems. In the approach presented
by Young [6], bow pressing force is deduced by measuring
downward and lateral bow stick deformation using foil strain
gages, while bow position wirespect to the bridge is measured
in a similar way to that of [5]. Data are sent to a computer
via a wireless transmitter mounted at the frog. Rasamimanana
and colleagues [7] perform wireless measurements of bow
acceleration by means of accelerometers attached to the bow.
Bow velocity profiles are reconstructed by using video data
in a postprocessing step [8]. Accuracy and robustness in bow
force measurement were recently taken to a higher level (see
[9], [10] and a re-implementation in [11]) by using strain gages
attached to the frog end of the hair ribbon, thus measuring
ribbon deflection. In a more recent approach presented in [12],
bowing parameters were very accurately measured by means of
a commercially available electromagnetic field-based tracking
device. Later, this methodology based on tracking positions
of string ends and hair ribbon ends was adapted to a more ex-
pensive and commercial camera-based motion capture system
that needed boa more complex calibration process (using many
markers), and a noise reduction postprocessing step [13].

Given the availability of bowing control data, several works
have recently presented techniques for quantitative analysis.
Rasamimanana and coworkers [7] used bow acceleration
extrema for automatic bow stroke classification by applying
linear discriminant analysis to a number of features extracted
from the acceleration contour. Later, authors continued their
work [14] presenting an analysis of performer arm coordination
(joint angles) under different bow stroke frequencies. Young
[15] extended automatic bowing technique classification to a
larger number of bowing techniques across different performers
by extracting the principal components of raw bow accelera-
tion and measurement data coming from a strain gage sensor
attached to the bow. Recently, a very interesting work [16]
approaches the analysis of bow velocity contours by describing

motion from a kinetic perspective based on effort, allowing for
the observation of anticipation effects.

B. Synthesis of Bowing Control Parameters

The challenging problem of synthesizing bowing parameters
from a musical score has also been addressed in past studies. A
first attempt is found in an early work by Chafe [17], where he
presented an algorithm for rendering a number of violin perfor-
mance gesture parameter contours (including boleft- and right-
hand parameters) by concatenating short segments following a
number of handmade rules. Extensions to this approach using
left hand articulations and string changes were introduced by
Jaffe and Smi[18] for controlling a digital waveguide bowed-
string physical model. Although these methods result in an inter-
esting application of the analysis of certain human performance
habits and/or conceptions, boapproaches lack real data-driven
definition of segment contours parameters. Similarly, some re-
search was pursued using standard ADSR envelopes MIDI-con-
trolled synthesis of the violin, exposing the limitations of the
chosen contour representation [19]. A very recent and inter-
esting study incorporating real data is found in [9], where bow
velocity and bow force contours of different bow strokes are
quantitatively characterized and reconstructed using mostly si-
nusoidal segments. The author considers different dynamics and
bow strokes (mostly focused on isolated notes), but flexibility
limitations of the proposed contour representation prevent the
model from generalizing its application to other more sustained
bowing techniques not based solely on bow strokes (e.g., longer
détaché notes or legato articulations).

Previously, author in [2] pointed out directions towards a gen-
eral framework for the automatic characterization of real in-
strumental gesture parameter contours using sequences of para-
metric Bézier curves, foreseeing them as a more powerful and
flexible basis for representation and modeling of real data con-
tour shapes (see their application to speech prosody modeling
in [20]). It was aimed at providing a means for reconstructing
contours by concatenating short curve units in a similar manner
as introduced in [17] and [18], but introduced a structured note-
level representation (as opposed to the work presented by Battey
[21] dealing with audio perceptual attributes). Later, in a first
quantitative application of a note-level structured representation
similar to the technique proposed in this work, authors in [22]
used concatenated Bézier curves for pursuing a model of dif-
ferent articulations in singing voice performance using pitch and
energy contours.

C. Violin Sound Synthesis

Capture or modeling of bowing control applied to sound syn-
thesis has traditionally been more present in the context of phys-
ical models, often centered around the digital waveguide mod-
eling framework introduced by Smith [23]. Serafin and Young
[24] successfully evaluated a real-time application combining
a bowing control measurement system [6] with Smith’s digital
waveguide bowed string model featuring a friction model [25].
For the case of offline scenarios, works in [17]–[19] pursue the
application of synthetic bowing controls to offline synthesis, but
none of the models are obtained from real performance data.
Conversely, Demoucron [9] uses real bowing control data for
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successfully reconstructing bow velocity and bow force con-
tours of a number of isolated bow strokes.

For the case of sample-based approaches, Schoner and col-
leagues carried out research in real-time cross-synthesis, driven
by acquired bowing parameters [26]. Although it was an im-
portant first step towards improving the flexibility of sample-
based synthesis, no synthetic control parameters were used. In
general, synthetic bowing control is still a missing component
in sample-based violin sound synthesis. While extended com-
mercial sample-based systems feature a vast number of possi-
bilities in terms of articulation, pitch, etc. (e.g., Vienna Sym-
phonic Library1), sample concatenation and control flexibility
limitations often represent a noticeable drawback when it comes
to naturalness of synthetic sound. Specialized spectral domain
sound transformations oriented towards real-time expressivity
control using traditional MIDI-based keyboard interfaces can
also be found in the market. Both the Garritan Solo Stradivari2

and the Synful Orchestra3 [27] achieve such sample transforma-
tions. An interesting feature of Garritan is that it incorporates
a sample database of string vibration signals where, following
sample transformation and concatenation, the body resonances
are added by convolution with an estimated impulse response.
It is worth noting that Synful is a modeling component able to
synthesize spectral envelopes from time-varying perceptual at-
tribute signals created from an input score.

D. Outline

In this paper, we present a general and extensible framework
for modeling contours of bowing control parameters (bow
velocity, bow force, and bow-bridge distance) for different
articulations and performance contexts by using concatenated
Bézier cubic curves. Two of the primary advantages of this
modeling framework are its ability to represent contours with
fidelity and robustness and its use of curve parameter extraction
that is carried out automatically from real performance data (see
Sections II and III for details on data acquisition and analysis
of bowing control data), providing a representation suitable for
both bowing control analysis and synthesis (see Section IV for
details on a statistical model estimated from the curve parame-
ters). We provide details concerning its application to rendering
bowing parameter contours from an input score (Sections V and
VI) and outline the application of synthetic contours of bowing
parameters for controlling both a digital waveguide physical
model (see Section VII-B) and a sample-based spectral domain
concatenative synthesizer (see Section VII-C).

The main components of a violin sound synthesis scenario
utilizing the presented modeling framework are sketched in
Fig. 2. From an input score, bowing control models obtained
from real data are used for generating synthetic contours. In
one portion of the schematic, synthetic bowing parameters are
directly used to drive a physical model, where the string vibra-
tion synthetic signal is convolved with a violin body impulse
response obtained from real data. In the other portion, rendered
contours are used both in the sample retrieval and sample

1http://vsl.co.at.
2http://www.garritan.com/stradivari.html.
3http://www.synful.com.

Fig. 2. Overview of the synthesis framework. Synthetic bowing controls are
used both in physical modeling sound synthesis (top) and in sample-based sound
synthesis (bottom).

Fig. 3. Overview of the data acquisition setup. The database is constructed
from processed motion, force, and audio data that has been automatically
aligned to acquired audio and segmented at note-level.

transformation stages of a sample-based synthesizer, where
the resulting sound signal (also corresponding to the string
vibration) is also convolved with the estimated body impulse
response. This work represents an extension of previous works
[12], [28], [11], [29]–[32] put in the context of offline sound
synthesis, providing a further advancement in the application
of the current research results to sound generation.

II. DATA ACQUISITION

Both bowing control data and produced sound were acquired
from real performance recordings in a reduced-intrusiveness
sensor setup, including a microphone AKG 414,4 a bridge
piezo-electric pickup Yamaha VNP1,5 two six-degree of
freedom (6DOF) sensors of the commercial tracking system
Polhemus Liberty6 each one providing position and
rotation (azimuth, elevation, tilt), and a self-constructed device
for sensing hair ribbon deformation based on strain gages.

An overview of the data acquisition is illustrated in Fig. 3.
Bowing motion data was acquired by following the procedure
introduced in [12], while bow force data was gathered using the
techniques presented in [11], [9], and [30]. Both acquisition pro-
cesses (bow motion and bow force) need a calibration process
to be performed prior to recording sessions.

Recording scripts (including exercises and short musical
pieces) were designed to cover four different articulation
types (détaché, legato, staccato, and saltato), three different
dynamics, and varied note durations in different performance
contexts (attending to bow direction changes and silences).
Score performance alignment was performed automatically by

4http://www.akg.com/
5http://www.yamaha.co.jp/english/product/strings/v_pickup/index.html
6http://www.polhemus.com/?page=Motion_Liberty
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Fig. 4. Acquired bowing control data and segmentation results for a pair of consecutive phrases in the database. From top to bottom: audio signal, bow transversal
velocity (cm/s), bow pressing force (N), bow-bridge distance (cm), and estimated string. Vertical dashed and solid lines respectively depict nominal and perfor-
mance onset/offset times (seconds).

means of a dynamic programming adaptation (based on the
Viterbi algorithm [33]) of the procedure introduced in [12]. The
algorithm is based on both audio analysis data and on acquired
bowing control parameters. When necessary, manual revision
was performed as a postprocessing step in order to ensure the
appropriate segmentation of bowing control and audio streams
of approximately 11 000 notes. Segmentation results for a pair
of consecutive phrases from the database is shown in Fig. 4,
where contours of relevant bowing control parameters are
displayed.

An estimation of the body impulse response of the violin was
carried out by deconvolving the string vibration signal (acquired
with a bridge pickup) with the radiated sound signal (acquired
with a microphone).

A. Motion Data Processing

Position and orientation of the two 6DOF sensors are tracked
at 240 Hz. The first is attached to the violin back plate, in the
upper bout, at the neck edge. The second one is affixed to the
bow wood, close to its center of gravity. From the data pro-
vided by these sensors, a set of motion descriptors is extracted
by means of the data processing steps outlined in this section.
For a more detailed description of the procedure for obtaining
relevant bowing motion parameter streams, refer to [12].

Initially, a calibration of the string and hair ribbon ends is per-
formed. The exact position of the eight string ends (four at the
nut and four at the bridge) can be tracked by previously anno-
tating (during calibration) their position relative to the coordi-
nate system defined by the position and orientation of the 6DOF
sensor placed in the violin. In a similar manner, the positions of
the two hair ribbon ends (at the frog and at the tip) are estimated
from the position and orientation of the 6DOF sensor placed on
the bow. Both the violin plane and the bow plane (respectively

Fig. 5. Schematic representation of relevant positions and orientations tracked
in the extraction of bowing motion parameters.

defined by their normal vectors and ) are estimated. The
former is estimated from the eight string ends, and the latter is
estimated from both the sensor position and from the two hair
ribbon ends (see Fig. 5).

We estimate the bow tilt by measuring the angle between the
violin plane normal vector , and a vector being simulta-
neously parallel to the bow plane and perpendicular to the bow
plane normal vector (the vector is obtained as the vectorial
product of the hair ribbon vector and ). In a similar manner,
the string being played is estimated by measuring the angle be-
tween and (see Fig. 5). By defining a line between the ends
of the string being played (depicted as and ), and another
line between the ends of the hair ribbon (depicted as and ),
a segment is defined by a line perpendicular to both and
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. The bow transversal position is defined as the distance be-
tween and , and the bow-bridge distance is defined as the
distance between and . Bow velocity is obtained as the time
derivative of the bow transversal position.

B. Bow Force Data Processing

Bow force is obtained using a dual strain gage device ex-
tending the ideas first proposed in [9] and later re-implemented
in [11]. When playing on a string, the force applied by the per-
former is estimated from the deformation of the hair ribbon, to
which a pair of strain gages are attached at the frog end. Each
strain gage is attached to one side of a bending piece that is
laying against the hair ribbon, thereby providing a measure of
the hair ribbon deflection.

A calibration procedure was designed for obtaining real
values of bow force from the voltage changes caused by the
deformation of the gages under different bowing conditions
(i.e., for different values of bow position and bow tilt). This
calibration procedure, set as a prerecording step, entailed the
construction of a bowing table on top of which a commercial
force transducer was attached. The transducer holds a rolling
cylinder (emulating the string) so that real values of pressing
force can be acquired when bowing the cylinder. In addition,
bow position and bow tilt were acquired by tracking bowing
table orientation and position, in a similar manner as used for
tracking the violin. Acquired values of bow force from the
transducer were set as the target prediction in a support vector
regression framework, with the inputs being the voltage read-
ings coming from the strain gages, the acquired bow position,
and acquired bow tilt.

Due to the long duration of the performance recordings
used for constructing our database, hair ribbon tension changes
happening during recording sessions caused inconsistencies
in the calibration parameters. For tackling this problem, we
redesigned the calibration procedure in order to make it incre-
mental, so that hair ribbon tension changes are compensated
(see [30] for a detailed description).

C. Body Filter Response Estimation

A body filter response (understood as the bridge pickup
to radiated sound transfer function response) is estimated by
means of deconvolving the acquired radiated sound signal
(microphone) and the acquired string vibration signal (bridge
pickup) [34], but in a frame-by-frame time-averaging fashion.

For doing so, we recorded a long duration glissando played
on the G string (lower pitch) in order to capture low frequency
excitation occurring during violin performance. For the acqui-
sition of the radiated sound, we placed the microphone in front
of the violin and asked the performer to keep the same position
and orientation while playing the glissando, so that a low vari-
ability on distance and orientation minimized inconsistencies in
our time-average bin-per-bin estimation.

The magnitude for each frequency bin is estimated as the
average of individual frame estimations (one per frame), each
one weighted by the energy of the frame. Conversely, the phase
value for each bin is estimated as the maximum of a phase his-
togram that is constructed from individual phase estimations
(one per frame), each one weighted by the energy of the frame.

Fig. 6. Framework for analysis/synthesis of bowing parameter contours. De-
nomination letters given the relevant variables along the process are displayed.

III. ANALYSIS OF BOWING PARAMETER CONTOURS

We model the temporal contours of bow velocity, bow force,
and bow-bridge distance as sequences of short segments, in par-
ticular Bézier cubic curve segments. Bow-bridge distance data
are first transformed into a normalized parameter that is com-
puted as the ratio between the bow-bridge distance and effective
string length, having the effective string length defined as the
distance between the bridge and the finger position. Considering
different note articulations, dynamics, and contexts, a number of
note classes is defined. Bowing parameter contours of the data-
base corpus are analyzed at note-level by following a predefined
grammar that dictates constraints of curve segment sequences
for each of the classes in consideration. Based on dynamic pro-
gramming, gesture parameter contour analysis provides a set of
curve parameters for each note. Obtained curve parameters are
sufficient for reconstructing original contours with significant fi-
delity, allowing the contours to be robustly represented in a rela-
tively low dimensionality space. As illustrated in Fig. 6, contour
representation parameters (e.g., curve parameters) are used for
obtaining a rendering model able to generate contours of bowing
control parameters given a set of note characteristics. The ren-
dering model can be used within a bow planning algorithm for
synthesizing bowing parameter contours from an input score.

In Fig. 6, we have displayed the denomination given to
relevant variables used along the process of both analysis of
contours (detailed in this section), and modeling of contours
(introduced in Section IV). The grammar entries are denomi-
nated as , and are needed for driving contour segmentation and
fitting (see Section III-C). The curve parameter vectors obtained
for each note sample by means of automatic segmentation and
fitting are denominated as (see Section III-D). Performance
context vectors (mainly derived from score annotations and
used for performing clustering of note samples as detailed in
Section IV-B) are denominated as . The letters , and are
used for denominating the three one-dimensional normal dis-
tributions that are used to describe each of the duration clusters
included in the model (see Section IV-C). Finally, each of the
performance context sub-clusters also included in the model
(see Section IV-B) is described by a curve parameter normal
distribution and a performance context normal distribution .

A. Note Classification

Concerning different score-annotation characteristics of the
notes in the corpus, notes are divided into different classes for
which specific bowing contour analysis is performed, and dif-
ferent models are later constructed. In order to set up the clas-
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sification basis, we attend first to intrinsic note characteristics
(based on annotations attached to the note), leaving three cat-
egories: articulation, dynamics, and bow direction. In addition,
two contextual characteristics (by looking to some character-
istics of the surrounding notes) are considered: bow direction
context and silence context. The possible labels for each char-
acteristic are as follows:

— Intrinsic characteristics
[ART] Articulation type: détaché legato staccato
saltato
[DY] Dynamics: piano mezzoforte forte
[BD] Bow direction: downwards upwards

— Contextual characteristics
[BC] Bow context: init mid end iso
[PC] Silence context: init mid end iso

Considering intrinsic note characteristics, first and most impor-
tant is the articulation type. We have considered four different
articulations: détaché, legato, staccato, and saltato. Three dif-
ferent dynamics are present in the corpus: piano, mezzoforte, or
forte. The possible bow directions are downwards and upwards.

In terms of what we refer to as contextual characteristics, we
consider two main aspects: the position of a note within a bow
(e.g., in legato articulation, several notes are played successively
without any bow direction change), and the position of a note
with respect to rest segments (e.g., silences). For the case of
bow context, we classify a note as init when it is the first note
played within a succession of notes sharing the same bow di-
rection. A note is classified as mid when it is played neither first
nor last. The class end corresponds to notes played last, while
notes appearing as the only notes within a bow (e.g., in détaché
articulation) are classified as iso. Similarly, the term silence con-
text refers to successions of notes with no rest segments or si-
lences in between. Respectively, notes will be classified as init
when preceded by a silence and followed by another note, as mid
when preceded and followed by a note, as end when preceded
by a note and followed by a silence, and as iso when surrounded
by silences.

Each possible combination of the five cited characteristics7

leads to a note gesture class . Collected bowing parameter
streams for each class are treated separately in the contour anal-
ysis and synthesis parts. With enough recordings, more contex-
tual variables could be taken into account such as the preceding
and following articulations or metrical position.

B. Contour Representation

Bowing parameter contours of classified notes are modeled
by sequences of a predefined number of parametric curve seg-
ments, in this case constrained cubic Bézier curves [21], [29],
following a structured representation applied at note-level. We
have represented the basic unit in Fig. 7 (left). The constraints
in Fig. 7 (center) allow defining its shape by a vector

, where represents the segment duration, rep-
resents the starting -value, represents the ending -value,
and and represent the relative -values of the attractors

and , respectively (possible shapes for extreme values of
and are displayed in grey). We chose this as the building

7Note that not all of the combinations are feasible. For instance, detaché notes
cannot share the bow direction with surrounding notes.

Fig. 7. Constrained Bézier cubic segment used as the basic unit in the repre-
sentation of bowing parameter contours (left). Following the constraints given
by the set of equations in the center, a sequence of segments can be defined for
representing a particular shape (right), where the parameters needed for repre-
senting the contour are depicted along with the linear approximation of each of
the segments.

block for modeling contours of bowing parameters because of
its robustness and flexibility. Given a bowing parameter contour

with , its starting value , and its ending
value , the optimal attractor relative -values and

leading to an optimal Bézier approximation of the seg-
ment can be found via constrained optimization [21].

C. Grammar Definition

Contours of bowing parameters (bow velocity, bow force,
and ratio) of the samples belonging to each note class have
been carefully observed in order to determine an optimal repre-
sentation scheme when using sequences of constrained Bézier
curve segments as previously introduced. While deciding on the
scheme, the aim was to minimize the length of the sequences
while preserving representation fidelity. For each of the note
classes, we defined a grammar entry composed by three
different tuples , and , each one corresponding to a
bowing parameter (bow velocity, bow force, and bow-bridge
distance). For a bowing parameter , the tuple is defined by

(1)

where corresponds to the number of segments, and is a
slope sequence constraint vector, both used during segmentation
and fitting.

The slope constraint vector defines the expected sequence of
slope changes for each bowing parameter contour. It can be
written as

(2)

where each is a slope change parameter defined for the th
pair of successive segments. If each th segment is approxi-
mated linearly, a contour slope sequence is ob-
tained. Each of the pairs of successive slopes entail a
slope change that can be either positive or nega-
tive . In order to express an expectancy on the se-
quence of slope changes, a parameter is defined for each of
the pairs of successive segments. This parameter can take
three different values: . A value of
denotes no clear expectancy in the relationship between succes-
sive slopes and . A value of denotes expecting
an increase in the slope value (i.e., ), while a value
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of denotes the opposite. This can be summarized as
follows:

if no expectancy on slope change
if expected
if expected

(3)

Observation of contours of the different classes led to the
definition of a grammar entry for each note class.8 Analyzing
other kinds of articulations or contexts (or even working with
control parameter contours of other musical instruments) would
of course lead to different grammar entries. An example tuple

of a grammar entry, defined for the hypothetic contour de-
picted in Fig. 7 (right), would be defined by and

.

D. Automatic Segmentation and Fitting

Segmentation and fitting are approached by automatically
searching an optimal duration vector such that
a total approximation cost is minimized while satisfying that
the sum of all components of the duration vector must be equal
to the note duration . This is expressed in (4) and (5), where
the approximation error for the th segment is computed as
the mean squared error between the real contour and its
optimal Bézier approximation (see Section III-B), and
corresponds to a weight applied to each

(4)

(5)

The weight applied to each of the first computed
is set as penalty and depends on the fulfillment of the slope
sequence constraints defined by (see Section III-C). For
each pair of successive th and th segments derived from
a candidate , a parameter is computed from the slopes
and of their respective linear approximations as

(6)

The weight is set to an arbitrary value in case
does not match its corresponding in the grammar tuple, only
when was defined as nonzero. This can be expressed as

(7)

The solution for this problem is found by using dynamic
programming [33]. From this analysis, the set of parameters
defining the Bézier curve segments that best models each of
the contours is obtained from each note in the corpus. Some
examples of the results of automatic segmentation and fitting
are shown in Fig. 8, where acquired bowing parameter contours
are compared to their corresponding Bézier approximations for
détaché, legato, staccato, and saltato articulations.

8http://www.dtic.upf.edu/~emaestre/gestureModels/bowed/violin/gram-
marV1.pdf

IV. MODELING OF BOWING PARAMETER CONTOURS

From the results of automatic segmentation and fitting (see
Section III-D), a curve parameter statistical model is obtained
for each note class. First, curve parameter vectors (each repre-
sents the contours of the three bowing parameters in a note ex-
ecution) are clustered by considering a set of performance con-
text parameters obtained from annotations. Then, normal distri-
butions of both curve parameters and performance context pa-
rameters are estimated from each cluster. A duration-specific
statistical description is obtained for each of the clusters. The
concept of this modeling approach is based on the notion that in
a contour rendering context, statistical descriptions of bowing
parameter contours can be retrieved from and adapted to an
input performance context derived from the musical score.

A. Contour Parameter Space

The curve parameters of each note are represented as a vector
resulting from the concatenation of three curve parameter vec-

tors , and (corresponding to the bow velocity, bow
force, and ratio contours, respectively), and the bow displace-
ment performed in the execution of
the note. This is expressed as

(8)

Curve parameter vectors reside in a space whose dimension-
ality depends on the number of segments used for modeling
bowing parameter contours (indeed defined by the corre-
sponding grammar entry , see Section III-C). Each of the
three parameter vectors contains three different sub-vectors: a
first sub-vector containing the relative durations of
each of the segments, a second sub-vector containing the
inter-segment -axis values (starting or ending values or

of each one of the segments), and a third sub-vector
containing the pairs of attractor -value ratios and [see
Fig. 7 (right)]. Equations (9)–(12) summarize the organization
of the parameters of a hypothetical parameter , and is appli-
cable to any of the three bowing parameters:

(9)

(10)

(11)

(12)

B. Performance Context-Based Sample Clustering

Note samples of each note class are first separated according
to the string played. Then, notes played on each string are clus-
tered into different groups based on a set of performance context
parameters, consisting in note duration , starting bow position

(distance from the frog to the string contact point), and
string length (obtained from the fundamental frequency). In
order to do so, each note is first annotated with a vector

(13)
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Fig. 8. Results of the automatic segmentation and fitting of bowing parameter contours. In each figure, from top to bottom: acquired bow force (0.02 N/unit),
bow velocity (cm/s), and bow-bridge distance (0.04 cm/unit) are depicted with thick dashed curves laying behind the modeled contours, represented by solid
thick curves. Solid horizontal lines represent the respective zero levels. Junction points between successive Bézier segments are represented by black squares,
while vertical dashed lines represent note onset/offset times (seconds). (a) Détaché articulation, (b) Legato articulation, (c) Staccato articulation, and (d) Saltato
articulation.

and a two-step k-means clustering is performed. Due to consid-
ering note duration as the most important of the three context
parameters in , notes are clustered in two steps.

1) Duration-Based Clustering: In a first step, duration
clusters of notes are obtained by applying the k-means clustering
algorithm [35] to the note samples, based on the first component
of the context vector , i.e., the note duration .

2) Performance Context-Based Clustering: In a second step,
performance context sub-clusters of note samples are ob-

tained by again applying the k-means clustering algorithm to the
notes within each of the previously obtained duration clus-
ters, but this time attending to the 3-D context vector . Ideally,
this leads to performance context sub-clusters per
note class , each one containing a number of contour pa-
rameter vectors and performance context vectors (we denote
these sets of vectors as and ), each pair corresponding
to a note sample.

C. Model Parameters Estimation

The parameters defining a bowing parameter contour model
of a note class consist of statistical descriptions of duration and
bow displacement attributes for each of the duration clusters,
as well as statistical descriptions of curve parameter vectors and
performance context attributes for each of the performance
context sub-clusters within each of the duration clusters.

1) Duration Cluster Description: Initially, a note duration
normal distribution

(14)

defined by a mean duration and a duration variance is
estimated from the duration of the notes contained in the th
duration cluster.

Secondly, for each duration cluster and each bowing param-
eter , an analysis is performed on the correlation between the
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absolute durations of the Bézier segments
and the note duration . We include such information in the
model in order to be able to adequately adjust segment relative
durations when reconstructing contours (see Section V). The
task of this analysis is to find which of the segments presents
the highest correlation with the note duration . In order to
do so, we first collect all note samples belonging to the dura-
tion cluster under analysis, and compute the Pearson correlation
coefficient between each segment absolute durations

of the segments, and the note duration . Then, we se-
lect the segment presenting the highest correlation:

(15)

As a result, a duration correlation vector

(16)

containing obtained segment numbers for each
of the three contours, is attached to each th duration cluster.

Finally, a bow displacement distribution

(17)

defined by a mean bow displacement and a bow displace-
ment variance , is estimated from the bow displacement

annotated for each note within the notes of the th
duration cluster.

2) Performance Context Sub-Cluster Description: Assuming
that both the curve parameter vectors and the context vec-
tors follow a normal distribution, we estimate pairs
of normal distributions and . The distribution
is estimated from the set of curve parameter vectors con-
tained in the cluster , and is defined by a mean vector
and covariance matrix . Analogously, the distribution
is estimated from the set of performance context vectors
contained in the cluster , and is defined by a mean vector

and covariance matrix . The two normal distributions
describing each sub-cluster can expressed as follows:

(18)

(19)

D. Model Parameters Overview

Thus, the set of parameters describing the model for each note
class will contain the following.

• duration clusters, each one defined by:
— a duration normal distribution ;
— a segment duration correlation vector ;
— a bow displacement normal distribution .

• performance context sub-clusters within each of the
duration clusters. Each of the performance context
sub-clusters is defined by:
— A performance context normal distribution ;
— A curve parameter normal distribution .

E. Discussion

In our implementation, the clustering procedure was set up as
an iterative process, having the initial parameters to be

(three duration clusters) and (nine performance context
sub-clusters). As a result of design principles followed in the
creation of the set of exercises used as recording scripts, a suf-
ficient number of notes of at least three different durations was
ensured for almost every combination of articulation type, bow
direction, and dynamics. Whenever very few note samples were
found in any of the performance clusters, was reduced
and the second-step clustering was repeated, yielding to values
of . For the specific case of staccato and saltato
articulations, some of the note classes are better represented by
just two duration clusters . Clustering parameters (and
hence the modeling capability of the clusters) is of course de-
pendent on the size and nature of the database.

The justification of the decision not to consider the bow
displacement as a variable for clustering is important
to mention. The definition of the variables constituting the
performance context parameter space is strongly linked to
data availability. Comparing histograms of bow displacement
to histograms of note duration revealed these two variables
to be considerably correlated, and it was difficult to cluster
bow displacement values in different groups. Converse to this
behavior is that observed when comparing duration to effective
string length or bow starting position, for which distributions
appeared more flat, which led to this decision. With an optimal
database coverage, an explicit introduction of the bow displace-
ment as one of the performance context parameters could have
been possible.

Notwithstanding the explanations given in the above para-
graph, the bow displacement is indeed taken into account during
the contour rendering stage by attending to the cross-correla-
tion between the different curve parameters and the bow dis-
placement itself (remember that the bow displacement has been
included as an extra dimension when constructing the contour
parameter vectors). When a contour parameter vector is gen-
erated from the resulting mixed Gaussian distribution, a bow
displacement value comes along [it is one of the dimensions,
see (8)]. It is likely that such a value of bow displacement does
not match the target value provided by the bow planning algo-
rithm, which implies that the bow displacement resulting from
the generated contour of bow velocity will likely differ from the
target. The intention is to meaningfully adapt the contour pa-
rameters (including those defining the bow velocity contour) so
that the bow displacement (and any other that is required, for
example in contour concatenation) is matched while respecting
the cross-correlation between variables. The process, based on
least-squares, is detailed in Section V-C.

V. SYNTHESIS OF BOWING PARAMETER CONTOURS

By using the model parameters, curve parameter values cor-
responding to each bowing parameter contour are obtained for
a given note present in an annotated input score. First, the note
class to which each note belongs is determined following the
principles outlined in Section III-A and detailed in [29]. Then,
a target context performance vector (see
Section IV-B) is determined from the score annotations. Based
on , a mixed curve parameter normal distribution is ob-
tained from the contour parameter normal distributions con-
tained in the model of the class in consideration. From , a
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curve parameter vector [see (8)] can be drawn. Although ob-
tained vectors will preserve the original variance, a number of
constraints must be fulfilled by some curve parameters present
in , so some components of must be tuned before can be
used for rendering the bowing parameters of the given note.

A. Contour Parameters Distribution Mixing

In this section, we detail the steps followed for obtaining the
mixed curve parameter distribution based on a target per-
formance context vector . The vector is determined by the
target note duration (duration in the input score), effective
string length (obtained from the scripted string and the pitch
of the note), and starting bow position . In the event that
the process for synthesizing bowing parameter contours of a
note is used as part of the bow planning algorithm introduced
in Section VI-A, is estimated at each of the steps of the
algorithm. Conversely, if contours are to be synthesized without
using the bow planning algorithm, is set to the mean
of the selected duration cluster (see Section IV-C1).

1) Duration Cluster Selection: First, the appropriate dura-
tion cluster (see Section IV-B) is selected. In doing so, we
compute the normalized Euclidean distance between the target
duration and each of the cluster duration distributions
as

(20)

2) Performance Context Cluster Selection: Within the se-
lected duration cluster , the closest performance context
clusters (see Section IV.B) to the target context vector are se-
lected from the sub-clusters in cluster . The selection is
performed by measuring the Mahalanobis distance

(21)

between and each th context vector distribution in
, and keeping a vector of length with the indexes of the

performance context clusters in increasing order.
3) Curve Parameter Distribution Mixing: The mixed curve

parameter distribution

(22)

from which we will draw a synthetic curve parameter vector , is
obtained as a weighted average of the source curve parameter
distributions corresponding to the closest performance con-
text distributions to the performance target . The mixed curve
parameter distribution parameters and , respectively, cor-
respond to the weighted average of the means and covariance
matrices of the source curve parameter distributions. This
can be written as

(23)

(24)

For the weights corresponding to each distribution in the
mix, we have used the Mahalanobis distances computed in the
previous step, yielding

(25)

Note that choosing a good value for is very dependent on how
data are distributed. It is more convenient to keep a low value for

, so that averaging of original distributions does not overly
reduce the variance of the curve parameters in the resulting .

B. Contour Parameters Tuning

After drawing an initial curve parameter vector from the
mixed distribution , its components are checked for the satis-
faction of a set of constraints, some dealing with the nature of the
curve segment model (for instance, attractor relative durations
must be greater than zero), others dealing with the nature of the
note class (e.g., related to articulation or bow/silence contexts),
and others dealing with the relative duration of segments, or with
note concatenation. Also, due to the nature of the model (some
dimensions do not exactly follow a normal distribution), some
values of the curve parameters in generated might not respect
some of the aforementioned constraints. As already mentioned
in Section IV-E, the bow displacement is one of the parame-
ters to be adjusted. Many other small adjustments are performed
in the actual implementation, but here we will just outline the
adjustment of the components of involved in the relative du-
rations of the segments, and in note contour concatenation is-
sues. At the end of the section, we introduce a methodology de-
vised for preserving the original likelihood of generated while
satisfying any of these constrains. The methodology, based on
least-squares, ensures that the probability of a new (after ap-
plying the adjustments) is maintained by performing required
extra changes to those variables not subject to any constraint.
More details can be found in [32].

1) Segment Relative Durations: The relative segment dura-
tions must sum to unity for each of the three contours. In
order to perform the adjustments, the segment duration that is
given by (which corresponds to the one found presenting
the highest correlation with the note duration, see Section IV-C)
is modified. This applies to any of the three bowing parameters.
In the contour parameter vector , the value of the relative du-
ration (indeed corresponding to the segment of
the bowing parameter ) is set to a value that, given the other rel-
ative durations, makes the relative durations sum to unity. This
can be expressed as

(26)
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where corresponds to the note target duration, and corre-
sponds to the number of segments used for modeling the contour
of the bowing parameter .

2) Note Concatenation: Possible discontinuities of bowing
parameter contours of successive notes are solved as follows.
The starting value of the first segment of the sequence
of each th note is set to the ending value of the th segment
(i.e., the last segment) of the sequence obtained for its
predecessor th note (see Fig. 7). This applies to any of
the three bowing parameter contours (bow velocity, bow force,
and ratio), and gets naturally integrated in the bow planning
algorithm presented in the next Section.

C. Tuning the Contour Parameter Vectors While Preserving
Likelihood

Let be the mixed normal distribution describing the model
curve parameters for a given note class and a target performance
context (see Section V-A), and let be the dimensionality of
vectors in the space where the distribution is defined. Once
an initial sample curve parameter vector is drawn from

, a subset of parameters (with ) contained in vector
must be tuned by adding a constraint vector of

the form in order to satisfy a
set of constraints (see above). In the event that the likelihood of
the resulting parameter vector has decreased with respect to
the initial , the non-fixed parameters of vector will
be modified by adding a vector of the form

, so that the squared Mahalanobis
distance between the initial and final vectors
and is minimized.

Expressing as the product of a selector
matrix and a vector of the form

, we write and as

(27)

...
...

. . .
...

...

...
...

. . .
...

...

(28)

The problem is to obtain the final sample parameter vector
by means of finding the optimal . With the initial sample
parameter vector fixed, the constraint vector , and the se-
lector matrix , we can express the search of as

(29)

where represents the covariance matrix of . By using (27),
we can rewrite (29) as

(30)

In order to solve the problem, we make the gradient
equal to zero, yielding

(31)

By solving for , we obtain the solution for as

(32)

VI. BOW PLANNING ALGORITHM

For a note to be executed in the context of a note sequence
found in a score, the starting bow position and the bow displace-
ment are chosen by the performer, who is able to plan the se-
quence of starting bow positions and bow displacements based
on the constraints imposed by the finite length of the bow and on
his/her preferences. In order to represent possible particularities
in note executions given the different bow starting position and
bow displacement possibilities, we have devised a bow planning
algorithm able to take those into account. The two additional
variables and introduced in the model (needed for
obtaining curve parameters from a mixed distribution ) come
into play, where the search for their appropriate values partially
drive the individual rendering of bowing parameter contours of
each note in the input score.

A. Algorithm Description

We set up the bow-planning problem as the task of finding
an optimal sequence of note bow starting and ending positions,
represented by the vector

(33)

in which the starting bow position of each note matches the
ending bow position of the previous note in the sequence:

(34)

For doing so, we set up the state transition matrix represented in
Fig. 9, for which the number of columns is fixed by the number
of notes in the sequence, and the number of rows is arbitrarily set
by the desired resolution used for representing the bow position

, with the string length being equal to 63 cm.
In Fig. 9, each th note is represented by an arrow going

1) from its onset to its offset in the x-axis (columns), and 2)
from the starting bow position to the ending bow position

in the -axis (rows). All possible executions of a note
(associated to possible combinations of starting and ending bow
positions) are assigned an execution cost (see Section VI-B).
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Fig. 9. Schematic illustration of the state transition matrix on which the bow
planning algorithm is based. For each note in the input sequence, all possible
combinations of starting and ending bow positions �� and �� are as-
signed an execution cost � .

The optimal path, represented by the vector , is found as the
path minimizing the total cost

(35)

having the total cost defined as the sum of the execution
costs of the notes

(36)

For each note in the sequence, the first step is to assign it a
note class. Then, scripted note duration and the effective
string length (the latter computed from the scripted pitch and
string) are obtained from the input score. In order to complete
the performance context target vector , the starting bow po-
sition and a bow displacement are needed. These
two additional values are defined for each possible execution
of the note, i.e., each possible combination of with

. While is used during distribu-
tion mixing (see Section V-A3), the value of is set as one
of the constraints for tuning curve parameters (see Section V-C).

In the algorithm, any value of is allowed for every
note, and the bow direction of the note will define the possible
values of , as it is expressed in

if downwards bow direction
if upwards bow direction

(37)

The solution for is found by using dynamic programming
techniques [33]. In our implementation, relatively short rests or
silences are considered as if they were normal notes, with the
aim of representing the bow traveling distance constraints asso-
ciated to them. For that, they are treated as short détaché notes,
using a détaché articulation model with duration-dependent dy-
namics for emulating different bow velocities. When necessary,
any given input score might be divided into several sequences
of notes depending on the length of the rests or silences found.

B. Cost Computation

Once the tuned curve parameter vector has been obtained
from (see Sections VI-A and V) for a candidate execution,
its associated cost is computed as follows. Given the set of

source distributions used for obtaining the mixed

distribution (see Section V-A), the cost is computed as
a weighted sum of negative log-likelihoods of the vector ,
each one computed given the corresponding th original distri-
bution. This is expressed as

(38)

where represents the weight applied to each of the likeli-
hoods, and is an additional cost related to the bow displace-
ment of the current execution candidate.

The value of used for weighting each th likelihood is set to
the Mahalanobis distance from the target performance context
point to the centroid of the th
source distribution (see Section V-A), computed as in
(25).

In order to further penalize note executions for which the
bow displacement (determined by the candidate execu-
tion) is not likely to happen, we introduce the weight . Since
we have not pursued an in-depth study of performer preferences
when choosing the bow displacement, we chose to pay atten-
tion to the bow displacement distribution associated with
the selected duration cluster from the model being used (see
Section IV-C). The penalty is computed as

(39)

C. Gesture Parameter Contour Concatenation

Gesture contour parameters of successive notes are naturally
concatenated within the bow planning framework by taking ad-
vantage of the partial optimal path search that characterizes the
Viterbi algorithm [33]. For a given th note and a given ending
bow position , the curve parameter vectors (each as-
sociated to a candidate and used for computing its asso-
ciated execution cost, see Section VI-B) are known when com-
puting the cost associated to the th note. For those candi-
date executions of the th note that have their starting bow
positions matching , the starting values of
the three contours of the th note will be set to the ending
values obtained for the th note ending at . Setting these
values is considered as a contour parameter constraint to be ad-
justed before computing the cost associated with the note (see
Section V-C).

VII. SOUND SYNTHESIS

Along previous chapters, we introduced a systematic ap-
proach to the acquisition, analysis, modeling, and synthesis of
bowing controls in violin classical performance. The frame-
work, which could be seen as an analysis/synthesis platform
for instrumental gestures, is applied to generating effective
bowing controls from an input score. The next subsections
describe how such bowing controls are used as a key element
for realistic violin sound generation, both in physical models
and in sample-based synthesizers.

A. Parameter Control Rendering

Some results of bowing parameter contour rendering, ob-
tained through an implementation of the modeling approach
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Fig. 10. Rendering results of bowing parameter contours. From top to bottom: bow force (0.02 N/unit), bow velocity (cm/s), and bow-bridge distance (0.04
cm/unit). Horizontal thin lines correspond to zero levels, solid thick curves represent rendered contours, and dashed thin curves represent acquired contours. Vertical
dashed lines represent note onset/offset times (seconds). (a) Détaché articulation, (b) Legato articulation, (c) Alternating détaché and legato articulation, (d) Saltato
articulation, (e) Staccato articulation, (f) Piano, mezzoforte, and forte dynamics for staccato articulation.

presented in this work (including the bow planning algorithm),
are shown in Fig. 10. In order to examine the results, we
used existing scores in the corpus as an input to the rendering
algorithm. By using note onset/offset times of the recorded
performances instead of the nominal times, it is possible to
visually compare the rendered and recorded contours.

Due to an unbalanced database note distribution, the number
of notes belonging to some of the note classes was much smaller
than for other classes, thus causing some performance context
sub-clusters to contain very few curve parameter vectors. In
these cases, a specific treatment is carried out, being opposite
to the already implemented policy of iteratively reducing the
number of performance context sub-clusters (see Section IV-E).
The solution, designed to artificially overcome variance prob-
lems, consists of decomposing covariance matrices of less popu-
lated sub-clusters into eigenvalues and eigenvectors, and scaling
eigenvalues by a factor inversely proportional to a relative mea-
sure of the number of vectors used when estimating the distri-
bution parameters (see Section IV-C).

B. Physical Model-Based Sound Synthesis

Synthetic contours of bowing control parameters have been
used for driving a modified version of the Cook and Scavone
Synthesis Toolkit in C++ (STK) [36] implementation of Smith’s
digital waveguide bowed-string physical model [23], sketched
in Fig. 11. A single string model with a low-pass one-pole im-
plementation of the loss filter has been chosen as a proof-of-con-
cept physical model for our bowing control model. In order to
simulate the body impulse response, we convolved the output
signal coming from the physical model with different impulse

Fig. 11. Smith’s digital waveguide bowed-string physical model. Performance
controls include bowing control parameters (bow velocity � , bow force � � �

ratio), and delay line length � (corresponding to string length for a given pitch).
Switches were added as a practical solution for easily incorporating off-string
bowing conditions.

responses computed through different methods [37], including
the body filter response estimated as outlined in Section II-C.
The exact magnitude measured with the pickup has not been
determined, but observations made it apparent that the signal
is closer to the force of the string on the bridge than to the
string velocity itself. Since the output of the physical model is
the string velocity, improved results were obtained when using
an impulse response extracted by measuring the string velocity
with a magnet below the bridge end of the string. Sound syn-
thesis examples are available online.9

9http://www.dtic.upf.edu/emaestre/gestureModels/bowed/violin/spm.zip
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1) Model Description: In Fig. 11, the right delay line pair
carries left-propogating and right-propogating velocity wave
samples and , respectively, which sample the traveling
wave components within the string to the right of the bow, and
similarly for the section of string to the left of the bow. The
“ ” superscript refers to waves traveling into the bow. String
velocity at any point is obtained by adding a left-propogating
velocity sample to the right-propogating velocity sample im-
mediately opposite in the other delay line (this occurs in Fig. 11
at the bowing point). The loss filter represents the losses at the
bridge, bow, nut, or finger-terminations, and the total attenua-
tion from traveling back and forth on the string. The bow-string
nonlinear interaction is defined as a function of the differential
velocity (bow velocity minus string velocity ) and
the bow force which, by modifying the shape of the bow
table function, provides the real-valued reflection coefficient

. The coefficient defines the proportion between waves
being reflected by and traveling through the bow. Bow–bridge
distance modifies the proportion of the delay line length
(corresponding to a given pitch) that goes into the bow–nut
delay line length and the bow–bridge delay line length .

2) Calibration Issues: Digital waveguide physical model
calibration represents a challenging problem not addressed in
this paper. We ignored left-hand articulation-related control
parameters (e.g., vibrato), so pitch transitions were considered
to be instantaneous (implying sudden changes on the delay
line length ), and string terminations were each represented
by a reflection coefficient . For the loss filter of the
single-string model, gain value and pole positioning were
manually set by listening to synthesized sound.

While both bow velocity and ratio were used directly
in the model, bow force was used to configure the shape of
bow table. The bow table was defined by a breakaway differen-
tial velocity and an exponential decaying factor , both de-
pending on [23]. Two linear mapping functions
and were manually tuned also by listening to syn-
thesis results. In order to approximate off-string bowing condi-
tions (e.g., saltato articulation), bow-string interaction (repre-
sented by the bow table) is bypassed when bow force becomes
non-positive (see the switches in Fig. 11). This implies left and
right delay lines to be connected, leading to a damped oscilla-
tion between successive saltato bow strokes. A physical mod-
eling solution to this would instead need an additional calibra-
tion function by which the bow table would smoothly morph
to zero (no waves reflected by the bow) as the force approaches
zero. In order to overcome the calibration difficulties brought by
such additional function (recall that calibration is not addressed
here), a more practical solution was achieved with the aforemen-
tioned switches.

C. Sample-Based Sound Synthesis

The obtained results on bowing control modeling presented
have also been preliminarily applied to sample-based, spec-
tral-domain concatenative sound synthesis. This was done by
making use of the same corpus utilized for constructing the
contour models. In the sample database, both the contours and
their corresponding curve parameter vectors (see Section IV-A)
are included as part of the annotations of each sample. Rendered

bowing controls are used both during note sample retrieval and
during note sample transformation, with the aim to meaning-
fully improve sample discontinuities and timbre transformation.
Sample transformation is performed in the spectral domain to
stored pickup audio signals (e.g., note samples), thus avoiding
potential problems introduced by body resonances. Assuming
the body filtering effect to be linear, the resulting audio signal
is convolved with a body impulse response that was previously
obtained by deconvolution as briefly described in Section II-C.
Sound synthesis examples are available online10.

1) Sample Retrieval: As a first step, a sample candidate list
is generated for each th note in the input score by making

use of different sample annotations: matching articulation, bow
direction, played string, bow context, and silence context (see
Section III-A). Then, sample retrieval is performed through an
optimal path search in a similar fashion as presented in [38] after
[39] (again making use of dynamic programming). In this work,
the main novelty is the introduction of a measure of distance
between target bowing control parameters and sample bowing
control parameters, therefore enabling the search for samples by
accounting for bowing parameter contours. The best sequence

of candidate indexes is found by minimizing a total cost
path

(40)

Three main sub-costs are computed for each of the notes in
the sequence: a perceptual distance cost , a bowing control
distance cost , and a sample continuity cost . This is ex-
pressed as

(41)

where respectively represent the manually adjusted
weights that are applied to , and . Note that the conti-
nuity cost is computed for every pair of successive notes.

The perceptual distance cost between target note and can-
didate sample is computed by comparing note duration, fun-
damental frequency, annotated dynamics, and fundamental fre-
quency intervals of preceding and following notes.

The bowing control distance cost is computed as the Ma-
halanobis distance between the curve parameter
vector (see Section V.C) and the annotated bowing control
parameter vector of the candidate sample. This can be written
as

(42)

where corresponds to the mixed covariance matrix that was
used for obtaining (see Section V-A).

The continuity cost between th and th notes is set
as a penalty for encouraging the algorithm to retrieve samples
that appear contiguous in the database.

2) Sample Transformation: Fundamental frequency and
duration mismatches between input score values and retrieved

10http://www.dtic.upf.edu/~emaestre/gestureModels/bowed/violin/ssb.zip
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sample annotations are transformed in the spectral domain by
means of an implementation of the phase-locked vocoder tech-
niques described in [40] and [41]. In particular, time-scaling
is applied non-uniformly along each sample so that sustain
segments carry most of duration transformation.

Retrieved samples are framewise transformed in the spectral
domain by taking into consideration the differences found be-
tween rendered and retrieved contours. Both the rendered con-
tours and the retrieved contours (the latter resulting from the
concatenation of the contours of retrieved samples) are used to
control a neural network-based violin timbre model that is able
to predict spectral envelopes of the harmonic and residual con-
tent, given the instantaneous values of bow velocity, bow force,
and bow-bridge distance. Two pairs of spectral envelopes (har-
monic and residual) are consequently obtained for each frame,
respectively corresponding to the predictions obtained from in-
stantaneous values of rendered parameters and from those of
retrieved samples. Predicted spectral envelopes are then sub-
tracted for each frame, resulting in a differential envelope for
the harmonic content and another for the residual content. The
resulting differential envelopes are used as a time-varying filter
for modifying the spectral content (harmonic and residual) of
retrieved samples. Sample transformations that are meaningful
to bowing control context are thereby achieved, causing timbre
continuity to significantly improve, especially in the concatena-
tion surroundings. Details concerning the timbre model, which
was trained by feeding it with audio data aligned to bowing con-
trol data (as it appears in the database used for synthesis), can
be found in [28], and [32].

VIII. CONCLUSION

In this paper, we have presented an approach for bowing
control modeling in the context of violin sound synthesis. The
framework is based on a method for automatically character-
izing contours of relevant bowing control parameters acquired
from real violin performance. Contours are represented by
concatenating cubic Bézier curve segments following a scheme
that is structured at note-level. An analysis-synthesis statistical
model of bowing control contours is built on top of obtained
curve parameters. The model is used for rendering bowing
parameter contours (bow velocity, bow force, and bow-bridge
distance) from annotated input scores. Synthetic bowing pa-
rameter contours are successfully used for driving violin sound
generation using a digital waveguide-based physical model
and a sample-based spectral-domain concatenative synthesis
framework.

It represents a difficult task to quantitatively assess the va-
lidity of the proposed bowing control model. In our implemen-
tation, we tested a significant number of model parameter con-
figurations (e.g., grammar definitions, clustering parameters),
searching for an optimal setting by comparing rendering re-
sults to acquired data and by listening to synthesized sound. An
unevenly distributed note database led to some inconsistencies
in the statistical model that had to be artificially compensated
by scaling down the eigenvalues of some normal distributions.
Also, missing recordings for notes in particular performance
contexts (especially concerning starting bow position) kept the
bow planning algorithm from being fully consistent. With a

larger database, a deeper analysis of the different choices for
the model parameters would both enhance population of clus-
ters, and serve as a better test-bed for quantitatively validating
the performance of the bow planning model.

Several extensions are possible, such as adding more note
articulations, considering left-hand controls, or adding a sto-
chastic component on top of rendered contours. An extended
database including performance from different musicians
playing different styles would further validate this modeling
framework. Approaches for automatic grammar definition
would be of great value when extending this framework to
other excitation-continuous instruments. Additionally more
violin use-cases could be studied. For example, automatic per-
formance annotation could prove to be useful for expressiveness
or style analysis based on studying choices of articulations,
bow directions, etc. Complementary perspectives for modeling
motion (e.g., kinematics) may also be considered to be a
roadmap for further research.

For the case of physical model-based sound synthesis, we
observed that the resulting sound impressively improved in
terms of realism and naturalness even though a very simplified,
non-calibrated digital waveguide model was used. Incorpo-
rating more complex physical models has a high potential for
further improving the sound. Although we did not primarily
devote our research to calibrating the physical model, an auto-
matic calibration procedure (based on spectral-matching and
using acquired bowing control and audio data) is currently
under development.

Regarding sample-based sound synthesis, the resulting
sounds also demonstrated a high degree of realism. Although
some of the expressive features of database samples were
retained and a simple vibrato model was applied, an improve-
ment of the feeling of timbral continuity (especially around
sample boundaries) was apparent. Nevertheless, possible dis-
continuities occur mainly due to sample selection errors or
sample transformation limitations. Thus, fine adjustments of
sample selection weighting and tuning of the timbre model will
improve results in future implementations.

Generally, the instrumental control modeling framework pre-
sented in this study points to future directions in musical instru-
ment sound synthesis. As appropriate techniques for measuring
control parameters become available, emulating playing habits
in human performance may become feasible, thereby bringing
instrumental sound synthesis to a higher level. Current sample-
based synthesis techniques may already start to take benefit
from the ideas of performer–instrument decoupling as intro-
duced in this work. The combination of automatic control ren-
dering with control-based spectral-domain sample transforma-
tion may provide a degree of controllability close to that of phys-
ical models. For the case of physical-models, next generation
synthesizers able to represent the most complex sound produc-
tion mechanisms will nevertheless require a control model in
order to exploit the great control flexibility derived from their
nature.
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