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1 Introduction

We invite you, reader, on a mathematical trip. Our starting point will be a

well{known problem, the three{door problem; our endeavours to solve it will

take us to a beautiful representation system for the real numbers in (0; 1] which,

in turn, will provide us with an actually computable enumeration of the positive

rationals (in the sense that we shall be able to tell what rational is in position n

and, viceversa, given a rational �nd its position in the enumeration); as a bonus

we shall easily prove the irrationality of e: Lastly, already exhausted, our trip

will end in the dark region of mysterious sets, �nding a simple description of a

Cantor{type perfect set contained in [0; 1]:

2 Starting point: the three{door problem.

Mathematics have always been enriched by a diversity of games and intellec-

tual curiosities which have provided, throughout its history, an endless supply

of problems which have acquired a life of their own, far removed from the

recreational aspect of their origins. In this way the �rst building blocks of

probability owe their existence to the analysis of gambling games carried out by

Fermat and Pascal back in the beginning of the XVIIth century. Undoubtedly

Fermat himself was much attracted to mathematics thanks to Bachet's Probl�e-

mes plaisants et d�electables of 1612, [1], which was an introduction to Bachet's

most famous book: the latin translation of Diophantus' Arithmetica, in whose

margins Fermat wrote the note that made his major theorem famous. Lastly,

to mention another important instance, E. Lucas' R�ecr�eations math�ematiques,

[13], constituted a source of interesting problems in the beginning of the present

century.

In our case, let us start our excursion with the setting of a \simple" problem

which is presented in the form of a quite innocent game.
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2.1 The three{door problem.

In a TV contest, one of three shut doors hide a wonderful prize while the other

two open onto a dismal void. . . . The host proposes that the contestant choose

one of the three doors. After choosing, to make things a bit more interesting,

the host opens one of the other two doors wide showing the absence of any

prize and o�ers the constestant the possibility of changing his/her choice. Our

hero/heroine (the contestant, obviously!) has to take a dramatic decision: to

change or not to change.

Our mathematical challenge is to help the contestant to make his/her deci-

sion �nding the probability of both possibilities. A (widely accepted) solution

to the problem is assigning probability 1=3 to the conservative option (not to

change) and 2=3 to the daring option (to change). One of the easiest ways of

reaching this conclusion is the following reasoning:

The probability of choosing the right door in the �rst place is unques-

tionably 1=3: The probability that one of the other doors contain the

prize is then, 2=3: If we choose not to change when we are o�ered the

chance, our door still has the same probability of success, 1=3 while

now, the other door accumulates a probability of 2=3 of containing

the prize. Without hesitation, we must change.

2.2 A re{formulation of the problem.

We suggest our readers tackle the same problem with a slightly di�erent setting:

the n�door{problem.

In a TV contest, only one of n closed doors hides a prize. A

contestant randomly chooses one of the doors and then the host

opens one of the other n� 1 doors without a prize. The contestant

is o�ered the chance of changing the previous choice. In case of

changing, the old door gets completely mixed with the others be-

coming indistinguishable. After the new choice is made, the host

opens another of the n � 2 doors left that hides nothing and o�ers

the contestant the possibility of changing, and so on till only two

doors remain closed, i.e. the last choice of our contestant and the

door that the host has not opened.

A mathematician, having followed the whole process attentively,

says: 'I have followed the strategy of the contestant and I can say

that his/her probability of winning is 11/42'.

A second mathematician, who has been fast asleep during the whole

contest (not even knowing the value of n), wakes up and hears the

last utterance saying: 'From what my colleague says, there were 7

doors and the contestant changed on two occasions, when there were

4 and 3 doors to choose from'.

Can you explain how the two mathematicians reached their conclu-

sions?

We suggest our reader takes a rest and spends some time trying to �nd

the probability of each one of the 2n�2 possible strategies that our contestant
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can follow. A strategy can be represented by a strictly decreasing sequence of

positive integers fn; ak; ak�1; : : : ; a2; a1g such that

n > ak > ak�1 > : : : > a2 > a1 � 1:

where ai denotes that a change of doors was made when there were ai doors to

choose from (notice that ak 6= n� 1).

2.3 The solution to the problem.

If no change whatsoever is made, the probability of winning is obviously 1=n: If

a last minute change is made (when there is only one door o�ered besides the

initially chosen), the probability of winning will be (n� 1)=n:

If we describe any other strategy by the above convention, our �rst change

is made when we can choose from ak doors. The probability of choosing the

right door will be the probability of having previously chosen the wrong door

times the probability of choosing correctly among ak doors, that is:

pk =

�
1�

1

n

�
1

ak

:

For our next change, reasoning in the same way we would have,

pk�1 = (1� pk)
1

ak�1

=

�
1�

�
1�

1

n

�
1

ak

�
1

ak�1

;

which can be expressed

pk�1 =
1

ak�1

�
1

ak�1 � ak
+

1

ak�1 � ak � n
:

Iterating the process we have for the last change

p1 = (1� p2)
1

a1

=
1

a1

�
1

a1 � a2
+ � � �+

(�1)k�1

a1 � a2 � � �ak
+

(�1)k

a1 � a2 � � �ak � n
: (1)

In expression (1) we obviously have

1 � a1 < a2 < : : : < ak < n� 1:

A strategy gets completely described by a subset of the set f1; 2; : : :; n � 2g;
(; corresponds to the strategy of making no change at all). For each strategy,

fa1; a2; : : : ; akg � f1; 2; : : : ; n� 2g, the probability of winning is expression (1).

This accounts for our �rst mathematician's assertion as

n = 7; k = 2; a2 = 4; a1 = 3 and p1 =
1

3
�

1

3 � 4
+

1

3 � 4 � 7
=

11

42
:

To account for our second (and quite smart) mathematician's claim, we can

play a little with what we have and �nd a few more probabilities in the case

n = 7. We could end up with a table similar to the following:
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Strategy Probability

f1; 2; 3; 4;5g 1�
1

2
+

1

2 � 3
�

1

2 � 3 � 4
+

1

2 � 3 � 4 � 5
�

1

2 � 3 � 4 � 5 � 7
=

62

105

f1; 2; 3; 4g 1�
1

2
+

1

2 � 3
�

1

2 � 3 � 4
+

1

2 � 3 � 4 � 7
=

53

84

f1; 2; 3g 1�
1

2
+

1

2 � 3
�

1

2 � 3 � 7
=

9

14

f2; 4; 5g
1

2
�

1

2 � 4
+

1

2 � 4 � 5
�

1

2 � 4 � 5 � 7
=

111

280

. . . . . .

A patient completion of the former table (25 entries) would show a most inte-

resting fact: to di�erent strategies there correspond di�erent probabilities. This

motivates the following result.

Theorem 2.1 Any rational p=q 2 (0; 1] expands uniquely in the following way:

p

q

=
1

a1

�
1

a1 � a2
+ : : :+

(�1)k�1

a1 � a2 � � �ak
; (2)

where ai are positive integers verifying:

1 � a1 < a2 < : : : < ak�1 < ak � 1:

proof The interval (0; 1] can be expressed as the disjoint reunion

(0; 1] =

1[
n=1

�
1

n+ 1
;

1

n

�
:

Now, given a � 2 (0; 1]; � will belong to one of the intervals

�
1

n+ 1
;

1

n

�
:

Consequently,

� =
1

n

� �1

�
1

n

�
1

n+ 1

�
=

1

n

�
�1

n(n+ 1)
;

for a �1 2 [0; 1): If we denote �1 = �1=(n+ 1); we have the equality,

� =
1

n

�
1

n

� �1
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and �1 2 (0; 1
n+1

): Applying the same procedure to �1 we get

�1 =
1

m

�
1

m

� �2 (m > n)

and therefore we will eventually get an expansion of the form (2):

� =
1

n

�
1

n �m
� �2 (m > n)

In point of fact, the algorithm that leads to (2) can be summarized by iterating

the two operations

ai =

�
1

�i�1

�
with �0 = �; (3)

�i = 1� �i�1 � ai:

(bxc denotes the greatest integer less or equal than x:)

If � is irrational, all the �i will be irrational and the algorithm will never

terminate (this proves more than promised in the phrasing of the theorem; it

proves the existence of an in�nite expansion of the form (2) for any irrational

in (0; 1]).

If � = p=q is a rational number in lowest terms, the algorithm is easily seen

to become a modi�ed Euclidian algorithm. If we divide q by p :

q = a1 � p+ r1 (0 � r1 < p);

it is obvious that �
q

p

�
= a1 and

r1

q

= �1:

Next we would perform the division of q by r1 :

q = a2 � r1 + r2 (0 � r2 < r1);

and so on. As the sequence of remainders ri will be strictly decreasing p > r1 >

r2 > : : : ; the algorithm will eventually terminate with rk = 0: Therefore the

expansion (2) will be �nite. The last two divisions being

q = ak�1 � rk�2 + rk�1 (0 � rk�1 < rk�2)

q = ak � rk�1;

will imply

ak�1 � rk�2 = (ak � 1) � rk�1

and as rk�1 < rk�2 we will have ak�1 < ak � 1:

The uniqueness of the expansions comes from the double inequality

1

a1 + 1
<

1

a1

�
1

a1 � a2
+ � � � �

1

a1

:

The only duplicate expansion is obtained in the �nite case, due to the equality

1

n+ 1
=

1

n

�
1

n(n+ 1)
:
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That is the reason for the exclusion of two consecutive integers at the end of

the expansion. 2

We will denote the expansion (2) by

ha1; a2; : : :i:

Now, we see how our second mathematician performed his/her trick. The

probability mentioned by his/her colleague was 11=42:

42 = 11 � 3+ 9

42 = 9 � 4+ 6

42 = 6 � 7:

Thus
11

42
=

1

3
�

1

3 � 4
+

1

3 � 4 � 7
= h3; 4; 7i:

The uniqueness of the expansion allows our clever friend to say:

there were 7 doors and the contestant changed on two occasions,

when there were 4 and 3 doors to choose from.

3 A representation system for the real numbers

in (0; 1]:

We get to the �rst resting spot of our excursion. Looking backwards we see that

we have solved our generalised n{door problem and, at the same time, we have

discovered a system of representation for the real numbers, � in (0; 1] :

� =
1

a1

�
1

a1a2

+
1

a1a2a3

� � � �

where 1 � a1 < a2 < a3 < : : :.

The �rst mathematicians who paid any attention to these expansions were

Lambert and Lagrange, see [10, 11]. Posteriorly, Ostrogradsky, see [17], and

Sierpi�nski, [21], were the �rst to develop a few of their numerical properties.

Pierce in 1929, see [16], used the model in an algorithm to �nd algebraic roots

of polynomials. Some authors have used Pierce's name to denote the expansion

which had been previously refered to as \Lambert fractions" or \ascending

fractions". The most interesting modern presentation can be found in Shallit

(1986), see [19], who developed at the same time the metric theory of the model

following the methods used for the non-alternated expansions (Engel's series)

developed in 1947 by Borel, see [2], and L�evy, see [12], and later by Erd�os, R�enyi

and Sz�usz in their paper [3] of 1958, improved by R�eny in 1962, see [18]. There

is also a 1987 paper by A. Knopfmacher and J. Knopfmacher, [8], who use the

model to build IR: Some interesting new results related to Pierce expansions can

be found in [20] and [9].

The easiest in�nite Pierce expansion is h1; 2; 3; 4; : : :i which coincides with

the Taylor expansion of 1� e
x for x = �1 :

1�
1

e

=
1

1!
�

1

2!
+

1

3!
� � � �= h1; 2; 3; : : :i:
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Incidentally, this proves the irrationality of e:

Other examples are not so obvious. As a curiosity we mention

h1; 3; 5; 7; : : :i =
1
p
e

1X
n=0

1

2n � n! � (2n+ 1)
:

As a system of representation, Pierce expansions are not bad at all. If

� = ha1; a2; : : : ; an; : : :i, is the truncation of the development at level n, it

provides quite a good approximation to the number represented:

j�� ha1; a2; : : : ; anij <
1

a1 � � �an � an+1
; (4)

which, in the worst case (ai = i; i = 1; 2; : : :), is of the order 1=(n+ 1)!:

4 A computable enumeration for Q
+
:

There exist di�erent ways of enumerating Q
+
; but not one of these known

enumerations allow us to actually compute the position of a given rational

or, viceversa, �nd which rational occupies a given position. The most usual

enumeration is the diagonal ordering of the rationals:

1

1
;

2

1
;

1

2
;

3

1
;

2

2
;

1

3
;

4

1
;

3

2
;

2

3
;

1

4
;

5

1
;

4

2
;

3

3
;

2

4
;

1

5
; : : :

All fractions appear in the scheme above but duplicated in�nitely many

times; to �nd the position of p=q one can compute (1=2)(p+q�1)(p+q�2)+q:

To determine the position of the irreducible ones is, as Prof. Hardy says in [4],

more complicated . So, even if it is theoretically possible to reach a given rational

number in this enumeration, it is obvious that in practice it cannot be achieved.

As we see the problem (you can �nd more about this and other enumerations in

our paper [15]), its nature is intimately related to the representation of rational

numbers. The basic idea is using the �nite subsets of IN = f1; 2; 3; : : :g through
the binary representation of a positive integer n:

n = 2b1 + 2b2 + � � �+ 2br �! fb1 + 1; b2 + 1; : : : ; br + 1g;

where 0 � b1 < b2 < : : : < br :

From here, the method consists in �nding a system of representation for Q+

such that all positive rationals correspond one{to{one with the �nite subsets of

IN: Pierce expansions provide the system of representation we need.

To any strictly increasing �nite sequence of positive integers,

fa1; a2; : : : ; akg with 1 � a1 < a2 < � � � < ak;

we may associate the positive integer:

n = 2a1�1 + 2a2�1 + � � �+ 2ak�1

or, what amounts to the same, the number n such that in the binary system is

written, from right to left, as 1 in positions a1; a2; : : : ; ak and 0 in the rest of

places. For example,

f1; 3; 5; 8g �! 20 + 22 + 24 + 27 = 10010101:
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Now, to any rational number p=q 2 (0; 1] we can associate its Pierce expan-

sion, ha1; a2; : : : ; aki, which may be regarded as the strictly increasing �nite

sequence of positive integers fa1; a2; : : : ; akg with the particularity that ak >

1+ak�1: According to the previous assignment its corresponding positive integer

would be of the form (binary) 10 : : : ; with a 0 in the last but one position

as we go from right to left. To any rational number q=p > 1; we associate

the Pierce expansion corresponding to its inverse p=q = ha1; a2; : : : ; aki and
from this, we consider the strictly increasing �nite sequence of positive integers

fa1; a2; : : : ; ak�1; ak � 1; akg: Its corresponding positive integer would be of the

form 11 : : : ; with a 1 in the last but one position as we go from right to left.

Conversely, to any positive integer n written in the binary system as

2a1 + 2a2 + � � �+ 2ak with 0 � a1 < a2 < : : : < ak;

we assign the following rational number:

1. If ak > 1 + ak�1 �! h1 + a1; 1 + a2; : : : ; 1 + aki 2 (0; 1]

2. If ak = 1 + ak�1 �!
1

h1 + a1; 1 + a2; : : : ; 1 + ak�2; 1 + aki
> 1

The uniqueness of the Pierce expansion of any rational number in (0; 1]

ensures the bijectivity of the map just de�ned between IN and Q
+
:

5 A closer look to Pierce expansions

Let us rest for a while to contemplate what we have achieved. Quite a bit. As

we rest, it is worth our while to examine Pierce expansions from a closer point

of view. For each real number in (0,1], we may consider the i�th projection

!i as the map that assigns to a real number its i�th partial quotient: if x =

ha1; a2; a3; : : :i, then !i(x) = ai.

We will call a cylinder of order k the set of numbers such that the �rst k

partial quotients are �xed:

C(a1; a2; : : : ; ak) = fx 2 (0; 1] : !1(x) = a1; !2(x) = a2; : : : ; !k(x) = akg:

It is seen at once that cylinders of any order are intervals of length:

jC(a1; a2; : : : ; ak)j =
1

a1 � a2 � � �ak � (1 + ak)
:

It is also clear that a cylinder of order k is the disjoint union of all the

cylinders of order k + 1 contained in it:

C(a1; a2; : : : ; ak) =

1[
j=1+ak

C(a1; a2; : : : ; ak; j):

Obviously, we can consider generalized cylinders, in which the �xed par-

tial quotients are not the �rst k. The problem is that these are not intervals

any more (though they still are unions of intervals). The most simple is the

following:

H[!k = n] = fx 2 (0; 1] : !k(x) = ng;
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which is a reunion of cylinders:

H[!k = n] =
[

1�a1<a2<:::<ak�1�n�1

C(a1; a2; : : : ; ak�1; n):

Consequently, its Lebesgue measure is:

�(H[!k = n]) =

=
X

1�a1<a2<:::<ak�1�n�1

1

a1a2 � � �ak�1n(n+ 1)
=

=
1

n(n + 1)

X
1�a1<a2<:::<ak�1�n�1

1

a1a2 � � �ak�1
:

There are di�erent ways of evaluating this last sum. A beautiful one is

the following. Multiplying inside by (n � 1)! and dividing outside by the same

quantity we get:

X
1�a1<:::<ak�1�n�1

1

a1a2 � � �ak�1
=

1

(n � 1)!

X
1�a1<:::<an�k�n�1

a1a2 � � �an�k:

(5)

Now, this last sum, can be viewed as the coe�cient of xk in the polynomial

x(x+ 1)(x+ 2) � � � (x+ n� 1): (6)

The coe�cients of this last polynomial are known as Stirling numbers of the

second kind. The properties of Stirling numbers (both of the �rst and the

second kind) can be found in Jordan, [6], or, to cite a more recent reference, in

Graham, KJnuth & Patashnik, [5], whose notation we follow:
�
n

k

�
. Thus,

x(x+ 1)(x+ 2) � � � (x+ n� 1) =
h
n

1

i
x+

h
n

2

i
x
2 + � � �+

h
n

n

i
x
n
: (7)

For our purposes, we only need a very simple property of Stirling numbers:

h
n

1

i
+
h
n

2

i
+ � � �+

h
n

n

i
= n! (8)

which is trivially obtained from (7) replacing x by 1.

Now, the last sum in (5) can be written as:

X
1�a1<:::<ak�1�n�1

1

a1a2 � � �ak�1
=

=
1

(n� 1)!

X
1�a1<:::<an�k�n�1

a1a2 � � �an�k =

=

�
n

k

�
(n� 1)!

:

and we have, �nally:

jH(!k = n)j =
1

n(n+ 1)
�

�
n

k

�
(n� 1)!

=

�
n

k

�
(n + 1)!

:
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With these results it is now very easy to prove the following:

Theorem 1. The set of real numbers in (0; 1] such that the integer n appears

in its Pierce expansion has Lebesgue measure 1=(n+ 1).

Theorem 1 has an immediate corollary:

Theorem 2. The set of real numbers in (0; 1] such that the integer n does not

appear in its Pierce expansion has Lebesgue measure n=(n+ 1).

It is not di�cult to generalize theorem 2:

Theorem 3. The set of real numbers in (0; 1] such that the integers n and m

do not appear in its Pierce expansion has Lebesgue measure :

�
1�

1

n+ 1

�
�
�
1�

1

m + 1

�
:

All these results can be seen in Shallit's paper [19].

6 A Cantor{type perfect set

Let us consider the set, C, of real numbers in (0; 1] such that their Pierce

expansion contains no odd integers. According to theorem 3 of the former

section, the Lebesgue measure of C is:

�(C) =

1Y
n=1

�
1�

1

2n

�
= 0:

The set C has the power of the continuum as we can establish a one{to{one

correspondence between its elements and (0; 1]:

ha1; a2; : : : ; an; : : :i $ h
a1

2
;

a2

2
; : : : ;

an

2
; : : :i:

It is also easy to prove that C has the same structure as Cantor's set: C is

closed and dense{in{itself (all points in C are limit{points), thus a perfect set,

and C is a frontier set (its complement is a reunion of intervals).

7 A Cantor{type perfect set formed exclusively

by trascendental numbers

In 1848 (1851) J. Liouville established a very important result which permitted

him to exhibit, for the �rst time in mathematics, a trascendental real number,

that is a real number which is not the root of any polynomial equation with

real coe�cients. These last numbers are called algebraic of degree n if n is the

lowest degree of the polynomials which have it as a root.
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Liouville's Theorem. If � is algebraic of degree n, there exists a constant

M which depends only of � such that for all rational number a=b we always have

����� a

b

��� � M

b
n
:

(See [14] for details).

Liouville's theorem states that algebraic numbers are not well approximated

by rational numbers in the sense that any rational approximation to � with a

given denominator has a closeness \boundary" which cannot be surpassed.

In our case, let us consider the following Pierce expansion of a real number

`p = hp2!; p3!�2!; : : : ; pn!�(n�1)!; : : :i =
1

p
2!
�

1

p
3!
+

1

p
4!
� � � �+

(�1)n

p
n!

+ � � � ; (9)

where p is any positive integer.

The number `p is trascendental because inequality (4) tells us that

����`p �
�

1

p
2!
�

1

p
3!
+ � � �+

(�1)k

p
k!

����� =
����`p � a

p
k!

���� < 1

p
(k+1)!

<

1

(pk!)k
; (10)

thus contradicting Liouville's theorem if it were algebraic of degree k.

We consider now the set Lp of all real numbers in (0; 1] such that their Pierce

expansions contain only integers extracted from the Pierce expansion of `p. As

we did in the previous section, it is seen at once that Lp has measure zero, power

of the continuum and as all of them will verify inequalities as (10), all of them

are trascendental.
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