
Tying up the loose ends in  
simple correspondence analysis 
 
Michael Greenacre 
Department of Economics and Business 

Universitat Pompeu Fabra 

Ramon Trias Fargas, 25-27 

08005 Barcelona 

SPAIN 

 
E-mail: michael@upf.es 
 
 
Abstract: Although correspondence analysis is now widely available in statistical software 

packages and applied in a variety of contexts, notably the social and environmental 

sciences, there are still some misconceptions about this method as well as unresolved 

issues which remain controversial to this day.  In this paper we hope to settle these 

matters, namely (i) the way CA measures variance in a two-way table and how to compare 

variances between tables of different sizes, (ii) the influence, or rather lack of influence, of 

outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps, 

(iv) whether or not to rotate a solution, and (v) statistical significance of results.   

 
Keywords: biplot, bootstrapping, canonical correlation, chi-square distance, confidence 

ellipse, contingency table, convex hull, correspondence analysis, inertia, randomization 

test, rotation, singular value decomposition.  

 
 
 
 
 
 
 
_____________________________ 
 
This research has been supported by the Fundación BBVA, Madrid, Spain. 



 2

1.  Introduction 

Correspondence analysis is now no longer a “neglected multivariate method” (Hill 1974) and has 

found acceptance and application by a wide variety of researchers in different disciplines, notably 

the social and environmental sciences.  The method has also appeared in the major statistical 

software packages, for example SPSS, Minitab, Stata, SAS and Statistica, and several 

implementations in R are freely available.  Nevertheless, there are still several issues that remain 

unsettled and which are often the basis for misconceptions and controversy over the method’s 

application and applicability.  In this paper I shall attempt to address these issues and – hopefully – 

lay them to rest with well-motivated clarifications and solutions.   

Although appearing in different but equivalent forms such as “reciprocal averaging”, “dual scaling” 

and “canonical analysis of contingency tables”, correspondence analysis (CA) is generally accepted 

as a way of visually displaying the association between two discrete variables, based on their cross-

tabulation in the form of a two-way table of frequencies.   The row and column categories are 

depicted in a spatial map where certain distances or scalar products may be interpreted as 

approximations to the original data.  The most widespread source of confusion in correspondence 

analysis (CA) is the scaling used to define the coordinates of the row and column points, and this 

has led to various misconceptions and doubts about CA’s usefulness.  Apart from this aspect, there 

are also differences of opinion about such issues as: the measure of variance used by CA and its use 

of the chi-square distance, which is at the heart of the method’s theory; the apparent influence of 

outlying points in the map; the alternative ways the geometric solution can be scaled and their 

respective interpretations; whether solutions should be rotated or not; and the statistical 

“significance” of the results. 

After a summary of the method’s theory, mainly to define notation, I shall address all these issues 

and propose explanations and/or solutions.  It should be stressed that attention is restricted in this 

paper to “simple” (two-way) CA.  Multiple correspondence analysis, which visualizes the 

associations among more than two categorical variables, has its own set of misunderstandings and 

controversies that are beyond the scope of the present paper, but which will be addressed in a 

follow-up publication.  

 
2.  Summary of correspondence analysis theory 

In this section the theory of CA is summarised in order to define the terms and notation for the later 

sections.   CA is a particular case of weighted principal components analysis (PCA) (Benzécri 1973, 

Greenacre 1984: chapter 3).  In this general scheme, a set of multidimensional points exists in a 

high-dimensional space in which distance is measured by a weighted Euclidean metric and the 
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points themselves have differential weights, called “masses” to distinguish them from the dimension 

weights.  A two-dimensional solution (in general, low-dimensional) is obtained by determining the 

closest plane to the points in terms of weighted least-squares, and then projecting the points onto the 

plane for visualization and interpretation.   The original dimensions of the points can also be 

represented in the plane by projecting unit vectors onto the plane – these are often depicted as 

arrows rather than points, since they may be considered as directions in the biplot style of 

interpretation  (Gower & Hand 1996; Greenacre 1993a, 2004), discussed further in Section 6.   The 

following theory shows how to obtain the coordinates of the projected points, called principal 

coordinates, and the coordinates of the projected unit vectors, called standard coordinates. 

Suppose that N is an I × J table of frequencies, usually a two-way contingency table.  Each row of N 

can be expressed relative to its respective total as a vector of relative frequencies, called a row 

profile.   The row profiles thus define I points in a Euclidean space.  Each profile point is weighted 

by its mass, the row margin of that row relative to the grand total of the table.  Distances between 

row profiles are defined as chi-square distances, a weighted Euclidean metric where each squared 

difference between profile elements is weighted inversely by the average profile element, that is the 

corresponding column margin relative to the grand total of the table.  In a completely symmetric 

fashion, the columns of N can be expressed relative to their totals as column profiles, each with a 

mass and with inter-profile chi-square distances, as if we applied the same description above to the 

transpose NT of N.  However, as we discuss later, the table is often considered as a set of rows or a 

set of columns depending on the context, and this determines whether we represent row or column 

profiles.     

As in PCA, the idea is to reduce the dimensionality of the matrix and visualize it in a subspace of 

low-dimensionality, usually two- or three-dimensional.   The solution was shown by Greenacre 

(1984: Chapter 2 and Appendix) to be neatly encapsulated in the singular-value decomposition 

(SVD) of a suitably transformed matrix.  To summarize the theory, first divide N by its grand total n 

to obtain the so-called correspondence matrix P = (1/n) N.   Let the row and column marginal totals 

of P be the vectors r and c respectively, that is the vectors of row and column masses, and Dr and Dc 

be the diagonal matrices of these masses.  Thinking of the table as a set of rows, say, we calculate 

the row profiles by dividing the rows of P by their row totals:  Dr
–1P.  Then CA is a weighted 

principal components analysis of the row profiles in Dr
–1P, where distances between profiles are 

measured by the chi-squared metric defined by Dc
–1 and the profiles are weighted by the row masses 

in Dr.   The centroid (weighted average) of the row profiles turns out to be exactly the vector cT of 

marginal column totals, hence CA of the row profiles analyses the centred matrix  

Dr
–1P – 1cT, since it can be shown that the principal axes of the profiles necessarily pass through the 

centroid.  The dual analysis of column profiles can be defined simply by interchanging rows with 
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columns and all associated entities, i.e. transposing the matrix P and repeating all the above.   Thus 

CA can be equivalently defined as the weighted PCA of the column profiles, contained in the rows 

of Dc
–1PT, where distances between profiles are measured by the chi-squared metric defined by Dr

–1 

and the profiles are weighted by the column masses in Dc.   The centroid of the column profiles is 

the vector rT of row masses, hence CA of the column profiles analyses the centred matrix Dc
–1PT – 

1rT.   

In both row and column analyses, the weighted sum of (chi-squared) distances of the profile points 

to their respective centroids is the same, and is equal to: 
2
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This quantity, called the (total) inertia, measures the dispersion of the row profile points and the 

column profile points in their respective spaces.   It is identical to the measure of association known 

as (Pearson’s) mean-square contingency φ 2 (square of the “phi-coefficient”), which is Pearson’s chi-

squared statistic divided by the grand total n: φ 2 = χ2/n. 

The computational algorithm to obtain coordinates of the row and column profiles with respect to 

principal axes, using the SVD, is as follows: 

1. Calculate the matrix of standardized residuals: 

   2/12/1 )( −− −= cr DrcPDS T                           (2) 

2.      Calculate the SVD: TVUDS α=  where UTU = VTV = I                       (3) 

3. Principal coordinates of rows:       αr UDDF 2/1−=                                (4) 

4. Principal coordinates of columns: αc VDDG 2/1−=                      (5) 

5. Standard coordinates of rows:       UDX 2/1−= r                         (6) 

6. Standard coordinates of columns: VDY 2/1−= c                         (7) 

The rows of the coordinate matrices in (4)–(7) above refer to the rows or columns, as the case may 

be, of the original table, while the columns of these matrices refer to the principal axes, or 

dimensions, of the solution.  Notice that the row and column principal coordinates are scaled in such 

a way that 2
αcr DGGDFFD == TT , i.e. the weighted sum-of-squares of the coordinates on the  

k-th dimension (i.e., their inertia in the direction of this dimension) is equal to the principal inertia 

(or eigenvalue) αk
2, the square of the k-th singular value, whereas the standard coordinates have 
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weighted sum-of-squares equal to 1:  IYYDXXD == TT
cr .  Notice further that the only 

difference between the principal and standard coordinates is the matrix Dα of scaling factors which 

affect the principal axes. 

A two-dimensional solution, say, would use the first two columns of the coordinate matrices.  The 

following are the three most common versions of maps where rows and columns are plotted jointly, 

with a distance (PCA) or scalar-product (biplot) interpretation as the case may be: 

1. Symmetric map: joint plot of principal row and column coordinates F and G 

2. Asymmetric map of the rows: joint plot of principal row coordinates F and standard column 

coordinates Y. 

3. Asymmetric map of the columns: joint plot of the principal column coordinates G and 

standard row coordinates X. 

The joint plot of row and column standard coordinates X and Y has no justification from the point of 

view of interpretation.  The specific interpretations of the maps will be given when discussing the 

scaling problem in Section 6.   Since the interpretation is in terms of distances and projections, the 

aspect ratio should always be respected, i.e. a unit on the horizontal axis should be physically equal 

to a unit on the vertical axis.  The total inertia (1) is equal to the sum of all principal inertias 

α1
2+α2

2+…,  and the inertia accounted for in a two-dimensional solution, for example, is the sum of 

the first two terms α1
2+α2

2, while the inertia not accounted for is the remainder: α3
2+α4

2+… .  These 

parts of inertia are usually expressed as percentages of inertia explained by each dimension, as in 

PCA. 

 

3.  Empirical data: “author” data and “benthos” data 

Two data sets will mainly be used to illustrate the issues discussed in the remainder of this paper.   

The first is the “author” data set available in the program R (R Development Core Team 2005).  It is 

obtained in R from the MASS package, by issuing the following commands: 

 library(MASS) 
 data(author) 

The data form a 12 × 26 matrix with the rows representing 12 texts which form six pairs, each pair 

by the same author (Table 1).  The columns are the 26 letters of the alphabet, a to z.  The data are the 

counts of these letters in a sample of text from each of the books.  There are approximately 8000-

10000 letter counts for each book or chapter. 
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The second data set is a typical set of counts in an environmental survey, where several species are 

counted at a set of sampling locations (Table 2).  The columns represent 13 sampling sites (labelled 

1 to 11, R1 and R2), and the rows represent 10 species  (labelled s1, s2, …, s10).  The context is in 

marine sampling of benthic (sea-bed) species near an oilfield in the North Sea, where the first 11 

sites, the polluted sites, lie in an approximate grid around the oilfield and the reference sites R1 and 

R2 lie far away. 

The selection of the two data sets was made specifically to have one data set with very low inertia 

(data set “author”) and one with very high inertia (data set “benthos”).  The symmetric CA maps of 

the two tables are given in Figures 1 and 2 respectively.  In Figure 1, even though the total inertia is 

tiny (0.0184) there is still a surprisingly clear pattern in the positions of the 12 books, where each 

pair of books by the same author tends to lie in the same area of the map.  In Figure 2, the reference 

sites are well separated from the polluted sites which themselves form a diagonal spread from site 11 

in the upper left to sites 2 and 4 in the lower right.  

4.  Measuring the variance and comparing different tables 

In CA the variance in a table is quantified by the total inertia, measured in the following equivalent 

ways, starting with the definition (1) of Section 2. 

a. Sum of squared standardized residuals 

of relative frequencies 
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b. Weighted sum of squared differences  

between contingency ratios and 1 (weights ricj) 
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d. Weighted sum of squared χ2 distances between all 

½I(I–1) pairs of row profiles (weights riri') 
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e. Inertia of the column profiles: weighted sum of 

squared χ2 distances of the J column profiles to 

column centroid (weights cj) ∑ ∑
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f. Weighted sum of squared χ2 distances between all 

½J(J–1) pairs of column profiles (weights cjcj') 
∑ ∑ ∑<′
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Definitions a and b are symmetric with respect to rows and columns, while the remaining defintions 

are orientated either to row profiles or column profiles.  This section intends to answer the following 

question: if we have analysed two different tables, how can we compare their variances?   If the two 

tables have the same number of rows and columns, the answer is simply to compare the values of 

their respective total inertias.  The answer is not obvious, however, when the tables are of different 

sizes.  This problem is of much less importance in principal component analysis where variables are 

generally standardized to have variance 1, so that the total variance is equal to the number of 

variables.  But it is of crucial importance in CA  when tables from different sources are compared or 

analysed jointly (see, for example, Pagés and Bécue-Bertraut, 2005), in which case some type of 

table standardization is necessary that involves an equitable measure of table variance. 

As a first case let us consider several tables where the number of columns is fixed, and then  

calculate total inertias as the number of rows is increased.  For example, we considered a separate 

data set of 6371 cases from a health survey, specifically on the variables age (in years) and perceived 

health status (five categories) (see Greenacre 2002, for an extensive analysis of these data).   In order 

to cross-tabulate age with health status, age was categorized separately into 5, 7, 9 and 11 groups, 

respectively, with approximately equal numbers of cases in each group for each categorization.  The 

total inertias of the four analyses, as well as the parts of inertia on the first dimension of the CA in 

each case, were as follows: 

Table:    5 × 5    7 × 5    9 × 5   11 × 5 

 Inertia:  0.1389  0.1441  0.1462  0.1479 

 1st dimn: 0.1363  0.1392  0.1407  0.1416 

 (percent): 98.1%  96.6%  96.2%  95.8% 

As the number of age groups increases, it is clear that inertia must be added to the matrix, so this is 

not a surprising result.  In any case, the increases are not great, suggesting that the essential 

information is already contained in the 5 × 5 table.  In CA the dimensionality of the solution is equal 

to min{I–1, J–1}, which is equal to 4 for all four cases listed above.  Hence each table lies exactly in 

four dimensions, and the effect of increasing the number of age groups is just to add a little more 

inertia each time.  The solution is strongly one-dimensional, and we can see from the decreasing 

percentages of inertia on the first dimension that the increase in inertia is mainly in the form of noise 
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in the minor dimensions.  In summary, it seems reasonable to compare the total inertias of tables 

which have the same dimensionality, but we can also compare their inertias in principal subspaces of 

a common dimensionality, for example the first dimension in the above case.  The essential point is 

that the dimensionalities in the comparison be the same. 

Next, to illustrate the case of matrices of different dimensionalities, we generated a bivariate 

continuous distribution from which we constructed three tables, of order 3 × 3, 5 × 5 and 7 × 7 

respectively.  That is, we categorized the continuous variables first into three categories each and 

then using narrower intervals of five and seven categories.  The total inertias in the respective cases 

were 0.1754, 0.2448 and 0.3333, illustrating the large increase in inertia with increasing 

dimensionality of the table, even though the underlying distribution is the same.   The tables have 

respective dimensionalities of 2, 4 and 6.  A common way of measuring association between two 

categorical variables is Cramer’s V coefficient.  In terms of CA quantities,  this coefficient is equal 

to  }1,1min{/inertia −− JI , the quantity in the square root being the average inertia per 

dimension of the solution:  

3 × 3 table : average inertia = 0.1754/2 = 0.0877, hence V = 296.00877.0 =     

5 × 5 table : average inertia = 0.2448/4 = 0.0612, hence V = 247.00612.0 =  

7 × 7 table : average inertia = 0.3333/6 = 0.0555, hence V = 236.00555.0 = .   

This shows that Cramer’s V is not a suitable way of comparing variability, since most of the relevant 

inertia is invariably concentrated in a few major dimensions, with the result that averaging inertia 

over the dimensions leads to the measure decreasing as variability is added in the minor dimensions 

of the larger tables.  

If one looks more closely at these last analyses, the principal inertias (eigenvalues) and their 

percentages are: 

      3 × 3 : 0.1716         0.0038  

97.8%           2.2% 

      5 × 5 : 0.2069         0.0220         0.0158         0.0001  

84.5%           9.0%           6.5%            0.0% 

      7 × 7 :  0.2392         0.0526         0.0218         0.0188         0.0008         0.0002 

71.8%          15.8%           6.5%           5.6%            0.3%            0.0% 

In line with our previous remark, a comparative measure across tables would be the amount of 

inertia in spaces of the same dimensionality.  Since the first analysis is two-dimensional, we could 
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compare the inertias in the first two dimensions of each solution.   The accumulated inertias in the 

two solutions up to dimension 2 are as follows: 

      3 × 3 :   0.1716         0.1754  

      5 × 5 :   0.2069         0.2289  

      7 × 7 :        0.2392         0.2918 

The last column gives a fairer idea of how much inertia is introduced into the table by the coding.   If 

we were just comparing the 5 × 5 and 7 × 7 tables, then we would compare the accumulated inertias 

in the four-dimensional principal subspaces, which have values 0.2448 and 0.3323 respectively.  

Ratios of inertias can be calculated to quantify the increase, so that the increase from the 3 × 3 to the 

5 × 5 table is 0.2289/0.1754 = 1.305, an increase of 30.5%, and from the 5 × 5 to the 7 × 7 table it is 

0.3323/0.2448 = 1.357, an increase of 35.7%.  From the 3 × 3 to the 7 × 7 table there is a 

multiplicative increase of 0.2918/0.1754 = 1.664, that is 66.4%.  

Thus our proposal, which is more linked to the dimension-reducing objective of CA, is to compare 

the sum (or average) of the inertias calculated in principal subspaces of the same dimensionality, 

where the dimensionality is that of the smaller table.   This proposal obviously holds for all the first 

case studied above, where the dimensionalities of the tables being compared were equal. 

Let us apply this strategy to our two examples, “author” and “benthos”.  The author data has 11 

dimensions and the benthos data 9, so we compare accumulated inertias in the first 9 dimensions of 

each: for the author data, it is 0.01836, for the benthos data it is 0.3798.  Since 0.3798/0.01836 = 

20.7 we can say that the benthos data has just over 20 times more variability than the author data. 

To conclude this section, there is another way of thinking about this question, namely in terms of 

“signal” and “noise”.   Even in the cases of matrices of the same size, one matrix might have a one-

dimensional signal which dominates the variance with the rest being noise, while another matrix 

might have a two-dimensional signal, say, plus noise.  If we knew that, then comparing the “true” 

underlying variances would involve a comparison of the first inertia of the first matrix and the first 

two inertias of the second matrix.  In practice, however, there is no hard-and-fast decision about how 

many “significant” dimensions a matrix has, so this approach might be too subjective.  Our proposal, 

which compares solutions of the same dimensionality, would probably include some noise along 

with signal variance in the inertia calculation of each table, but at least our approach does not bias 

the comparison just because the matrices are of different sizes.  
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5.  The myth of the influential outliers 

Many authors have criticized CA, in particular the use of the chi-square distance, for being too 

sensitive to rare categories.  For example, Rao (1995: p.45) says that “since the chi-square distance 

uses the marginal proportions in the denominator, undue emphasis is given to the categories with 

low frequencies in measuring affinities between profiles”.   Legendre (2001: p. 271) says that “a 

difference between abundance values for a common species contributes less to the distance than the 

same difference for a rare species, so that rare species may have an unduly large influence on the 

analysis.”  My view is that in almost all cases this criticism is unfounded, in fact it is the method’s 

ability to handle large sparse data matrices which has made it so popular in fields such as archeology 

and ecology.  In this section I will show that an inspection of the numerical contributions, which are 

an integral part of the CA results, reveals the exact contribution, and thus an indication of the 

influence, of each category to the CA solution.   In almost all cases, rare categories play a minor role 

in the determination of the solution and thus can be omitted without noticeably changing the 

solution.   What gives rise to these criticisms is the fact that rare categories usually  lie far out on the 

CA map, and the phenomenon of outliers is generally associated with high influence.  But in CA 

each point has a mass and these outlying points – being established by very low frequencies – have 

very low mass, which reduces their influence.  This problem is bound up with the scaling issue in 

CA and in the next section I shall deal with the scaling of maps and propose alternative ways to 

obtain maps which visually “tone down” the rare categories in standard CA solutions.  

Both our examples contain some very low frequency columns.  For example, in the author data the 

rarest letters are: q (0.07%), j (0.08%), z (0.08%) and x (0.1%), with all other letters occurring 1% or 

more.   Of these Figure 1 shows q, z and x to be outlying, which might suggest that these three letters 

have high influence in the map.  However, an inspection of the contributions of these letters to the 

first two axes shows that they have contributions of 1.1%, 3.7% and 1.3% respectively to the first 

axis and 0.2%, 1.0% and 2.1% to the second.  The major contributors to the axes are the following: 

to the first axis d (17.0%), w (16.1%), h (14.6%), and  c (10.2%), and to the second axis y (48.5%) 

(note that y is not such a rare letter, with a frequency of occurrence of 2.2%).  Thus, if we removed 

q, z and x from the analysis, the map would hardly change, thus countering the belief that these 

outlying points have high influence.  The argument that rare categories greatly affect the chi-square 

distance between rows is similarly dispelled.  In Figure 1 we can see that the two books Islands 

(Hemingway) and Profiles of Future (Clarke) lie the furthest apart on the first axis, so their 

interprofile distance should be the most affected by these rare outlying letters.  We calculated their 

squared chi-distance in the full space to be 0.1020, with the sum of the contributions of the letters q, 

z and x to this distance equal to 0.0077, which is a modest percentage contribution of 7.6%.  It is 

clear that these two books will still be far apart even if these letters were removed from the analysis. 
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There is a similar result in the case of the benthos data.  The first five species account for 93.5% of 

the counts in the table, while the last five species (s6 to s10) are so rare that they jointly account for 

the remaining 6.5%.  The contributions of these five rare species to the first and second axes are 

jointly 6.2% and 12.5% respectively, even though in the map their positions appear as spread out as 

the more commonly occurring species. 

The phenomenon nevertheless remains that low frequency points are often situated in outlying 

positions in the map because of their unusual profiles – this is an issue that is bound up with the 

decision how to scale a CA map, which is the subject of the next section. 

6.  The scaling problem in CA 

The scaling problem in CA has much in common with the scaling problem in the biplot, which we 

summarize briefly here.  In a biplot a matrix M (I×J) is approximated by the product of two matrices 

ABT, which we can write as:  M  ≈ ABT.  Usually the approximation is by least-squares and the 

solution is conveniently obtained using the singular value decomposition of the M: M = UDσVT, 

where U, V and Dσ  are respectively the matrices of left and right singular vectors, and the diagonal 

matrix of singular values σ 1, σ 2 , σ 3 , ... , σ R  in descending order, and R is the rank of M.  The 

scaling problem is illustrated here for a rank-2 approximation of M, but applies in the same way to 

any low-rank approximation.  For the rank-2 (or 2-dimensional) case, A (I×2) (and B (J×2) have two 

columns each and are obtained from the first two columns of U and V, respectively, and the 

corresponding singular values, the first two elements on the diagonal of Dσ .  In scalar notation, we 

can write the rank-2 approximation as:  

  mij  ≈  ai1bj1 + ai2bj2 = σ 1 ui1vj1 + σ 2 ui2vj2                              (8) 

The biplot represents row i and column j by the coordinates [ai1, ai2] and [bj1, bj2] respectively, with 

the scaling “problem” being how to partition σ 1 and σ 2 between the left and right vectors.   In 

general this partitioning is as follows: 

  ai1 = σ 1γ ui1     ai2 = σ 2γ ui2                 bj1 = σ 11–γ vj1      bj2 = σ 21–γ vj2                          

i.e., a γ power of the singular value is assigned to the left singular vector and a (1–γ) power to the 

right singular vector.  Gower (2006) calls solutions with such scalings the “γ-family”. 

In the practice of biplots there are two common choices: (i) γ = 1, i.e. scale the row coordinates by 

the singular value – this is the row asymmetric map (see Section 2), also called “row principal” in 

SPSS, or “row-metric-preserving” (RMP) biplot by Gabriel (1971); or (ii) γ = 0, i.e. scale the 

column coordinates by the singular value – this is the column asymmetric map, or “column 

principal”, or “column-metric-preserving” (CMP): 
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row asymmetric (RMP):  [ai1, ai2] = [σ 1ui1,σ 2ui2]      [bj1, bj2] = [vi1,vi2] 

column asymmetric (CMP):  [ai1, ai2] = [ui1,ui2]               [bj1, bj2] = [σ 1vi1,σ 2vi2] 

In the row asymmetric biplot the distances between row points approximate the Euclidean distances 

between the original rows of M (hence “RMP”), whereas in the column asymmetric it is the inter-

column distances that are approximated in the map (hence “CMP”).  When the rows are sampling 

units and the columns are variables, these two biplots have also been called the form biplot and the 

covariance biplot respectively (Aitchison and Greenacre, 2002).   An alternative scaling, which is 

seldom used, is to scale both row and column coordinates by the square root of the singular values 

(i.e., γ=½) , but this is neither RMP nor CMP (confusingly, this is now called the “symmetric 

scaling” in SPSS Categories from version 10 onwards, whereas in previous versions it was called the 

“canonical scaling”). In our description here, the symmetric map scales both rows and columns by 

the singular values, and is thus both RMP and CMP but not in the γ-family and thus, strictly 

speaking, not a biplot: 

symmetric (RMP & CMP):  [ai1, ai2] = [σ 1ui1,σ 2ui2]      [bj1, bj2] = [σ 1vi1,σ 2vi2] 

The symmetric map is a convenient choice since both row and column points can be represented 

with respect to axes using the same scale, the sum-of-squares of the row coordinates being equal to 

the sum-of-squares of the column coordinates on each axis k, which is in turn equal to the part of the 

variance along that axis: 2
 

2
 

2  )()( kj jkki ikk vu σσσ ∑∑ == .  When drawing the asymmetric map, 

however, the sum-of-squares of each set of coordinates can be very different, in which case two 

different scales have to be used (see, for example, the function biplot in the R package).   In 

asymmetric maps, the coordinates which have been scaled by the singular values (i.e., “principal 

coordinates”), are usually drawn as points , whereas the unscaled coordinates (i.e., “standard 

coordinates”), are often depicted using arrows drawn from the origin of the map.  As a general rule, 

points in a map have an interpoint distance interpretation, whereas arrows indicate directions, or 

“biplot axes” onto which the other set of points (in principal coordinates) can be projected to obtain 

estimations of the data values mij.  These biplot axes can be calibrated in the units of the data (see 

Gabriel and Odoroff 1990, Greenacre 1993a, Gower and Hand 1996) .  

The above scheme can be carried over to the CA case, with several nuances as we shall see.  The 

generalized form of the SVD in the case of CA, described in the formulation (2)–(7) of Section 2, 

leads to the following form for (8), called the reconstitution formula since it effectively estimates the 

data values from the map: 
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On the right hand side of (9) we have the singular values from (3) and the elements xik and yik (k = 

1,2) of the first two columns of the standard coordinate matrices X and Y defined by (6) and (7).  

Hence, if we group the singular values with the standard coordinates in X,we obtain the row 

principal coordinates F defined in (4), and hence the asymmetric row map of the CA, which is RMP 

in that the chi-square distances between row profiles are approximated.   On the other hand, if we 

combine the singular values with the standard coordinates in Y, we obtain the column principal 

coordinates and thus the column asymmetric map, which is CMP in that the chi-square distances 

between column profiles are approximated.  If we scale both row and column standard coordinates 

by the singular values then we obtain the symmetric map, shown in Figures 1 and 2, where both row 

and column configurations approximate the chi-square distances but the specific scalar product 

property of the biplot is sacrificed, as pointed out above.  Notice that Gabriel (2002) has shown that 

the scalar product property, although not specifically satisfied, is not severely degraded in the 

symmetric map. 

There are two aspects peculiar to CA which distinguish it from the the general biplot scheme 

described previously.  The first aspect is that in CA the standard coordinates represent actual points 

which are theoretically possible to observe, namely the unit profile vectors (called vertices of the 

simplex space of the profiles): [ 1  0  0 ... 0  ], [ 0  1  0 ... 0 ], etc.   For example, in the row 

asymmetric map the projections of the row profiles are represented by the row principal coordinates, 

and the standard coordinates are projections of  these extreme profiles in the same space as the row 

profiles.  This explains why in CA the vertex points in standard coordinates describe a cloud of 

points which is much more dispersed than the cloud of profile points in principal coordinates.   This 

geometric result can also be deduced from the fact that the singular values αk in CA are always less 

than 1, being canonical correlations (see, for example, Greenacre, 1984).  As before,  the directions 

indicated by the vertex points can be considered as axes onto which profile points can be projected 

to estimate the elements of the matrix on the left hand side of (9).   

Let us illustrate this first property using our data sets, first the benthos data where the principal 

inertias αk
2 are relatively high.  Figure 3 shows the column asymmetric map, with columns in 

principal coordinates and rows in standard coordinates.  In this figure the column configuration is 

identical to that of Figure 2 (inter-column chi-square distances are approximated) whereas the row 

configuration is considerably stretched out, and stretched out more in the vertical than the horizontal 

direction (the row standard coordinates in Figure 3 are the row principal coordinates in Figure 2 

divided by the singular values on axes 1 and 2, equal to 245.0  and 073.0  respectively).  The 

joint plot in Figure 3 still looks acceptable since the column profile points in principal coordinates 

are still reasonably spread out compared to the row vertex points in standard coordinates.   The 

situation is completely different for the author data, however, since the principal inertias are very 
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small.  In Figure 4, the row asymmetric map, the points representing the 12 books are a small 

smudge at the centre of the map, a striking geometric demonstration of the very low inertia of these 

data.    

It is clear that some scale change would be necessary in Figure 4 in order to map the two sets of 

points together, for example change the scale of the column points by multiplying the standard 

coordinates by a value considerably less than 1 to bring them down to the scale of the row principal 

coordinates.  But this scale change would destroy the property that the standard coordinates 

represent actual profiles (vertex points), so the question is whether we can rescale the standard 

coordinates to give them meaningful lengths, while still being comparable in scale to the row 

profiles in principal coordinates.  To answer this question, we should first consider what the lengths 

of the column vectors signify in Figure 4 (this argument applies similarly to the lengths of the row 

point vectors in standard coordinates in Figure 3).  This brings us to the second particular aspect of 

CA, namely the presence of the masses ri and cj in the matrix being represented in the asymmetric 

maps, as given by (9). 

We can write (9) from the “row profile point of view” as follows, grouping the principal and 

standard coordinates: 

222111 )()( jijijj
i

ij yxyxcc
r
p

αα +≈







−                (10) 

that is, the asymmetric map biplots the differences between the row profile elements and their 

averages, expressed relative to the averages.   In order to recover an element on the left, we project 

the row profile point onto the biplot axis defined by the column vector and multiply this projection 

by the length of the vector.  So if we compare two column points in Figure 4 such as z and f which 

define biplot axes practically in the same direction, the projections of the book profiles onto this 

common direction will be the same.  The estimated values for z, however, will be more than five 

times those for f,  because of the much longer distance of z to the origin.  This makes little sense, 

because z is the less frequent letter: the  reason for this apparent anomaly is the division on the left of 

(10) by cj, which for z (j=26) gives high values because the letter z is so rare.   Instead of recovering 

profiles values relative to the average cj, we might propose to recover actual profile values directly, 

in which case the mass cj is carried over to the right hand side of (10) and absorbed in the standard 

coordinates as follows: 
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(note that the symbol ≈ is used repetively and signifies the weighted least-squares approximation in 

the original SVD).  The form (11) leads to a biplot using the principal row coordinates  [α1xi1, α2xi2]  

and the column standard coordinates rescaled by the respective column masses  [cj yj1, cj yj2].  This 

biplot is shown in Figure 5.   Now the column points have been pulled in by different amounts, 

depending on the values of their relative frequencies (masses) cj, so that the letter z is practically at 

the origin, while a common letter such as e is now more prominent.  This biplot scaling for CA is, in 

fact, the one proposed by Gabriel & Odoroff (1990).   

But Figure 5 is not satisfactory either, since it goes to the other extreme of pulling in the column 

points too much and, in any case, we already know that the deviations between the profile elements 

and their average on the left hand side of (11) will be high for frequent letters and low for rare 

letters, so the lengths of the vectors are still without interest.  An obvious compromise between (10) 

and (11) is to represent standardized differences: 
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which means that the standard column coordinates are rescaled by the square roots of the column 

masses, using expected relative frequency cj as a surrogate for the variance of column j.  This map is 

shown in Figure 6 and it is clear that the common scale for rows and columns is adequate for the 

joint visualization.  Moreover, a long vector such as that of letter “y” in Figure 6, tells us that there is 

more variance in the percentages of “y” than you would expect using the above standardization, 

compared to the letter “e”, for example (one could also introduce arguments of over- and under-

dispersion in this situation).  The same conclusion is arrived at by considering that the distance 

between tic-marks on a biplot vector is inversely related to the length of the vector (see Aitchison 

and Greenacre, 2002), so the tic marks on the “y” vector will be closer together than on the other 

vectors.   

In Figure 7 we show the benthos data similarly scaled, this time with the columns in principal and 

the rows in rescaled standard coordinates, the column version of (12): 
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It is clear from Figures 6 and 7 that this scaling functions well irrespective of the large difference in 

the total inertias of the two data sets.  Since these are biplots of standardized profile values, we call 

these maps standard biplots, (12) being the standard CA biplot of the rows and (13) the standard CA 

biplot of the columns.  It should be emphasized that there is no distance interpretation between the 

column points (letters) in Figure 6, neither between the row points (species) in Figure 7 – it is the 

direction and lengths of these point vectors that have meaning.   
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Notice also how the differences in total inertia can be observed in the standard biplots: in Figure 6 

there is a relatively small dispersion of the books in Figure 6 compared to the fan of letter vectors 

(low total inertia), while in Figure 7 there is a relatively large dispersion of the sites in Figure 7 

compared to the fan of species vectors (high total inertia).  

As a final remark, whatever map is chosen amongst those recommended above, at least one set of 

points is in principal coordinates to show the form of the corresponding profile cloud – this set is 

usually the set regarded as the “cases” of the study, for example the books, sites, age groups... 

7.  To rotate or not to rotate 

The short answer to this question is “yes, but why?”.  Rotation of CA solutions is possible, just as 

the solution of any of the factorial family of analyses can be rotated, but two further questions need 

answering first: (i) why is rotation necessary in the context of the data? (ii) which CA coordinates 

need to be rotated and how, taking into account that each point in CA has an assigned mass? 

First, why would a solution need rotation?  The idea behind a rotation is that if subsets of “variables” 

are made to coincide more closely with the dimensions of the solution subspace, then the 

interpretation is simplified.  The only consequence is that the percentages of variance explained are 

redistributed along the newly rotated axes, while still conserving all the variance explained by the 

solution as a whole.  In simple CA we do not have a set of variables as such, but rather a 

multicategory row “variable” and a multicategory column “variable”.  These often have different 

roles, one serving as a variable in the usual sense, used to interpret the solution space, the other 

defining groups whose positions are depicted in the “variable” space.  The analogy between 

variables in PCA/factor analysis and the categories of a single variable in CA is tenous to say the 

least.  Another point, perhaps even more important, is that the full CA space is not the unlimited 

vector space of real numbers but the simplex space of the profiles, which are vectors [v1 v2 ... ] of 

nonnegative numbers with the unit constraint: Σj vj = 1, delimited by the unit profiles as vertices of a 

simplex.   Row and column points are both centred within this space so we obtain for each set a fan 

of points radiating out from the centre in all directions, a situation far different from the usual one in 

PCA/factor analysis, where only the cases are centred and the variables can point in any direction 

depending on their correlation structure.    From this point of view it seems unlikely that some 

categories would form patterns at right-angles to one another and thus be candidates for rotation to 

“simple structure”.  In both examples discussed in this paper there is no benefit at all in rotating the 

solution  (see the vectors for the letters and the species in Figures 3 and 6). 

Having said this, there are some occasions in my experience, albeit extremely rare, where rotation 

would have been useful, but these have been almost entirely in the MCA context.  For example, 
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Figure 8 shows an MCA of 10 categorical variables which include a missing data category for each 

variable.  All the missing data categories are in a bunch in the lower right side of the map, opposing 

all the substantive categories lying in a diagonal band.  Since we are not interested in the missing 

data categories, it would be very convenient if these categories coincided along one dimension, since 

then we could simply ignore that dimension and look at projections on other pairs of dimensions to 

interpret the substantive categories.   

To conclude this section, supposing that rotation is justified in some rare cases, such as the above, 

how could a formal rotation of the solution be made?  Van der Velden (2003) considers rotations of 

principal coordinates or standard coordinates of the rows or columns, and even the simultaneous 

rotation of row and column coordinates.  In my opinion the choice is entirely dependent on the 

substantive nature of the data.  If the rows or columns define some type of response variable (e.g., 

the letters in the author data, the species in the benthos data) then rotation of that variable’s 

categories can be considered, but not the explanatory variable, since it is the response variable’s 

categories that are used to interpret the axes.   The standard coordinates of the response variable’s 

categories are analogous to the projections of unit vectors onto the principal axes (cf. factor loadings 

in PCA/factor analysis) and could be candidates for rotation to simple orthogonal or oblique 

structure.  There seems to be little justification for rotating principal coordinates.  As far as joint 

rotation of row and column coordinates, this would only be justified when both variables play 

symmetric roles, as in the case of multiple correspondence analysis: for example two questions in a 

questionnaire on the same theme.    There is more justification for rotating coordinates in multiple 

correspondence analysis (see, for example, Adachi, 2004), especially the constrained form known as 

non-linear principal component analysis, than in simple correspondence analysis.  

A technical issue in rotating CA solutions is how the masses should be taken into account in an axis 

rotation, since we are less interested in how well a low-frequency category coincides with an axis 

than a high-frequency category.   Thus, the rotation criterion should be weighted: for example, a 

(weighted ) varimax rotation of the J column standard coordinates would maximize the following 

function: 

∑ ∑ ∑ ′ ′−
j s j sjjsj y

J
yc

 

222 )~1~(                  (14) 

where jsy~ is the rotated standard coordinate, that is the ( j, s)-th element of  YQY =~
, where Q is an 

orthogonal rotation matrix.   Since 22/12 )~(~
jsjjsj ycyc = , this gives further credence to the scaling for 

the standard biplot  proposed in Section 6, motivated by (12). 
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8.  Stability and statistical significance of  maps 

Although CA is primarily a descriptive technique, and is frequently criticized for not being 

inferential, there are several possibilitites for investigating the statistical properties of the results.  If 

the data are in the form of a contingency table, arising from multinomial random sampling, principal 

inertias can be formally tested for significance, using the multivariate normal approximation to the 

multinomial and consequent distribution of eigenvalues of the covariamce matrix (see Greenacre 

1984 for a summary).   In addition, when the bilinear model is estimated not by weighted least 

squares but by maximum likelihood, a whole range of hypotheses can be tested (Gilula and 

Haberman 1986).   

In a context of more general types of data, there are two levels at which the variability of the results 

can be investigated, called “internal stability” and “external stability” by Greenacre (1984).  Internal 

stability refers to the data set at hand, without reference to the population from which the data might 

come, and is thus applicable in all situations, even for population data or data obtained by 

convenience sampling.  Here we are concerned how our interpretation is affected by the particular 

mix of row and column points determining the map.  Would the map change dramatically (and thus 

our interpretation too) if one of the points is omitted, for example one of the species in our second 

example? Such a question is bound up with the concept of influence and how much each point 

influences the rotation of the principal axes in determining the final solution.  The numerical results 

of CA known as “inertia contributions” provide indicators of the influence of each point.  The 

principal inertia λk = αk
2 on the k-th principal axis can be decomposed into parts for the row points 

and, separately, into parts for each column point.  If a point contributes highly to an axis, then it is 

influential in the solution.  Of particular interest are points with low mass that have high influence: 

these would be influential outliers, as opposed to the non-influential outliers described in Section 5.  

Greenacre (1984) gives some rules about determining the potential rotation of principal axes if a 

point were removed, which is one way of quantifying the influence in graphical terms.  

“External stability” is equivalent to the sampling variation of the map, and is applicable when the 

data arise from some random sampling scheme.  In order to investigate this variation, we need to 

know the way the data were collected, in its most basic form.  In the author data, the rows and 

columns are fixed but the text has been sampled within each book, although the way this was done 

has not been disclosed.  Let us suppose, for purposes of illustration, that each batch of text was 

simply chosen at random from the total corpus of text.  Meulman (1982) and Greenacre (1984) have 

proposed using a bootstrapping procedure to calculate several, say N, replicates of the data matrix, 

where N is typically chosen to be of the order of 100 to 500.   The data for each book is regarded as 

a multinomial population from which as many letters are selected at random as in the original data 

set.  Having established N replicates, there are two ways to proceed.  Greenacre (1984) proposed 
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using the replicates as supplementary row and column points in the analysis of the original matrix, 

leading to a sub-cloud of N points for each row and column; this strategy is called the “partial 

bootstrap” by Lebart (2006).  The alternative, proposed by Meulman (1982) is to re-run the CA on 

each of the replicate matrices and put all solutions together using, for example, Procrustes analysis, 

with the original configuration as a target, or alternatively using generalized Procrustes of all the 

replicate configurations.   

Figure 9 shows the result of the partial bootstrap after replicating the data matrix through random 

sampling 100 times, leading to 100 replicates for each letter, projected in principal coordinates onto 

the map of the original table.  Rather than draw all these row and column replicates, their dispersion 

can be summarized in the map by one of two ways: plotting either convex hulls or confidence 

ellipses for each subcloud of replicates.    

Figure 10 shows the convex hulls of each subcloud.   Since the convex hull is sensitive to outlying 

replicates, it is usually “peeled” once, that is the convex hull of points is removed and the convex 

hull of the remaining points is drawn.  Figure 11 shows the convex hulls after a peeling that removes 

an average of 8.7 points from each subcloud.  In this sense the convex hulls of Figure 11 cover an 

average of 91.3% of the points.  To obtain a convex hull including 95% of the points, one could 

devise a scheme to remove exactly 5% of the points from each subcloud (in our example, five points 

from each subcloud).  These points should be the most outlying points in each case, for example one 

proposal would be to peel off those points which are furthest from the centroid of the replicates.     

Confidence ellipses with 95% coverage can be calculated by finding the principal axes of each 

subcloud of points and then drawing an ellipse with axes having major and minor radii equal to a 

scale factor times the standard deviation (square root of eigenvalue) on each axis, where the scale 

factor depends on the sample size (see Sokal and Rohlf 1981: pp. 504–599 for details, also Murdoch 

and Chow, 1996).   Figure 12 shows the 95% confidence ellipses.  The confidence ellipse approach 

assumes that the pair of coordinates for each subcloud of replicates follows a bivariate normal 

distribution, an assumption which is not necessarily true.  When profiles are at the extremes of the 

profile space, which is an irregular simplex (see, for example,  Greenacre (1993b)), replicated 

profiles can lie on one of the faces of the simplex, generating straight lines in their projections onto 

subspaces.  In this case, confidence ellipses would exceed the permissible profile region and include 

points that are impossible to realize.  Convex hulls would include these straight line “barriers” in the 

space and would thus be more realistic.   

A non-statistical approach for elliptical representation of scatters of points is given by Silverman and 

Titterington (1980), who describe an algorithm for finding the ellipse with smallest area which 

contains all the points. 
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Finally, Gifi (1990: 408–417) proposes using the delta method for calculating asymptotic variances 

and covariances of the coordinates, which also leads to confidence ellipses.  This methodology, 

which uses the partial derivatives of the eigenvectors with respect to the multinomial proportions, 

relies on the assumption of independent random sampling.  Although this is not satisfied in either of 

the examples presented here, we present the results for purposes of comparison (Figure 13).  

Compared with Figure 12 the ellipses are rounder, indicating less correlation than in the replicates 

based on bootstrapping, otherwise the two approaches give quite similar results.  The convex hull 

approach with peeling is to be preferred, however, since it gives a more accurate indication of the 

dispersion of the points. 

9.  Summary 

I have considered five “loose ends” in simple CA, all of which are issues of contention and 

frequently debated, but without a satisfactory resolution of the problem.  In the following I 

summarize them along with my proposals for “tying them up”. 

(i) Comparing inertias of different sized tables: the proposal is to identify the lowest 

dimensionality of the set of tables, suppose this is equal to p, and then compare the sum-

of-inertias on the first p dimensions in the CA of each table. 

(ii) Outliers: in CA outliers are not necessarily influential, and in fact they are seldom very 

influential at all because they usually have low masses – the only way to judge their 

influence is to look at the tables of contributions to inertia. 

(iii) Scaling of joint plots: in general, the symmetric map, used routinely by most French 

data analysts, is the best default option.  When, from a substantive point of view, the 

table is regarded as clearly asymmetric in nature, where the rows, say, are the “subjects” 

and the columns the “variables” of the table, then a biplot display may be preferable, 

and the standard biplot is the best choice with the following scaling: (a) represent the 

rows in principal coordinates, because the inter-row distances are important to interpret, 

and (b) represent the columns in standard coordinates multiplied by the square-root of 

the corresponding column mass, since this scaling gives row point projections onto 

biplot axes equal to standardized values for the variables. 

(iv) Rotations: in general, these are not justified by the nature of the simplex geometry of 

CA; in the few cases where maps turn out in such a way that rotation would simplify the 

analysis, perform a rotation on standard coordinates, taking the masses into account by 

weighting all squared coordinates by the corresponding point masses. 
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(v) Stability of maps: at the internal level, look at the point contributions to inertia to see 

which points influence the principal axes the most; at the external level, data can be 

replicated using bootstrapping according to the original sampling scheme which was 

used to establish the data, followed by projection of the replicated row profiles and/or 

column profiles onto the original CA map, indicating the dispersion of each set of 

replicates by their concentration ellipse or, preferably, their convex hull, optionally 

peeled. 
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Table 1   Data set “author”: letter counts in 12 samples of texts from books by six different authors 

(R Development Core Team 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: TD (Three Daughters), EW (East Wind) – Buck (Pearl S. Buck) 

  Dr (Drifters), As (Asia) – Mich (James Michener) 

  LW (Lost World), PF (Profiles of Future) – Clark (Arthur C. Clarke) 

  FA (Farewell to Arms), Is (Islands) – Hem (Ernest Hemingway) 

  SF7 and SF6 (Sound and Fury, chapters 7 and 6) – Faul (William Faulkner) 

  Pen3 and Pen2 (Bride of Pendorric, chapters 3 and 2) – Holt (Victoria Holt)  

 

 

Abbrev. a b c d e f g h i j k l m
TD-Buck 550 116 147 374 1015 131 131 493 442 2 52 302 159
EW-Buck 557 129 128 343 996 158 129 571 555 4 76 291 247
Dr-Mich 515 109 172 311 827 167 136 376 432 8 61 280 146
As-Mich 554 108 206 243 797 164 100 328 471 4 34 293 149
LW-Clark 590 112 181 265 940 137 119 419 514 6 46 335 176
PF-Clark 592 151 251 238 985 168 152 381 544 7 39 416 236
FA-Hem 589 72 129 339 866 108 159 449 472 7 59 264 158
Is-Hem 576 120 136 404 873 122 156 593 406 3 90 281 142
SF7-Faul 541 109 136 228 763 126 129 401 520 5 72 280 209
SF6-Faul 517 96 127 356 771 115 189 478 558 6 80 322 163
Pen3-Holt 557 97 145 354 909 97 121 479 431 10 94 240 154
Pen2-Holt 541 93 149 390 887 133 154 463 518 4 65 265 194

Abbrev. n o p q r s t u v w x y z
TD-Buck 534 516 115 4 409 467 632 174 66 155 5 150 3
EW-Buck 479 509 92 3 413 533 632 181 68 187 10 184 4
Dr-Mich 470 561 140 4 368 387 632 195 60 156 14 137 5
As-Mich 482 532 145 8 361 402 630 196 66 149 2 80 6
LW-Clark 403 505 147 8 395 464 670 224 113 146 13 162 10
PF-Clark 526 524 107 9 418 508 655 226 89 106 15 142 20
FA-Hem 504 542 95 0 416 314 691 197 64 225 1 155 2
Is-Hem 516 488 91 3 339 349 640 194 40 250 3 104 5
SF7-Faul 471 589 84 2 324 454 672 247 71 160 11 280 1
SF6-Faul 483 617 82 8 294 358 685 225 37 216 12 171 5
Pen3-Holt 417 477 100 3 305 415 597 237 64 194 9 140 4
Pen2-Holt 484 545 70 4 299 423 644 193 66 218 2 127 2
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 Table 2   Data set “benthos”: abundances of 10 marine species near an oilfield in the North Sea at 

13 sites (sites 1 to 11 are polluted, R1 and R2 are unpolluted reference sites).  

 

 

 

 

 

Species 1 2 3 4 5 6 7 8 9 10 11     R1     R2
s1 193 79 150 72 141 302 114 136 267 271 992 5 12
s2 49 30 57 34 39 63 58 71 39 68 76 25 48
s3 19 39 11 38 18 20 11 22 30 40 3 55 65
s4 9 26 5 30 35 2 11 13 5 63 1 0 1
s5 17 7 15 8 10 13 21 10 8 18 5 8 3
s6 2 12 4 12 6 7 3 10 8 12 4 2 6
s7 4 2 0 3 4 11 8 1 3 3 29 2 3
s8 7 1 6 1 3 4 2 1 8 6 6 4 6
s9 4 5 2 11 1 2 3 3 2 2 2 3 1
s10 1 5 7 1 5 4 0 1 0 4 0 0 0

Sites
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Figure 1: Symmetric CA map of “author” data: first two principal axes; total inertia=0.01874 
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Figure 2: Symmetric CA map of “benthos” data: first two principal axes; total inertia=0.380

s10

s9

s8

s7

s6

s5

s4

s3

s2s1

R2
R1

11

10

9

87

6

5
4

3

2

1

-1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2

0.245 (64.52 %)

0.073 (19.12 %)



 27

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Column asymmetric CA map of “benthos” data: first two principal axes, showing the 
column (profile) points in principal coordinates and row (vertex) points in standard coordinates; the 

vertex points are joined to the origin. 
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Figure 4: Row asymmetric CA map of “author” data: first two principal axes, showing the letter 
(column) points in standard coordinates and book (row) points in principal coordinates; the book 

points have such a small total inertia that they are all practically at the origin of the map. 
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Figure 5: Gabriel biplot of CA of “author” data: first two principal axes, showing the letter 
(column) points in standard coordinates scaled by column masses and book (row) points in principal 

coordinates.  
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Figure 6: Standard biplot of the CA of the “author” data: first two principal axes, showing the letter 
(column) points in standard coordinates rescaled by square roots of masses, and book (row) points in 

principal coordinates. 
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Figure 7: Standard biplot of the column profiles of the “benthos” data: first two principal axes, 
showing the sites (columns) in principal coordinates and the species (rows) in standard  

coordinates rescaled by square roots of their masses. 
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Figure 8: Multiple correspondence analysis map of response categories to 11 questions, labelled A 
B, C, ..., K, plus a character “+” (agree), “?” (unsure), “-” (disagree) or “X” (missing).  The 

diamonds correspond to supplementary demographic categories (abbreviations not given here). 
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Figure 9:  (Partial) bootstrapping of 26 letters, after 100 replications of the data matrix.  The more 
frequent the letter is in the texts, the more concentrated (less variable) are the replicates. 
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Figure 10:  Convex hulls of points in Figure 10, showing letters in their principal coordinate 
positions in the original map. 
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Figure 11:  Peeled convex hulls of points in Figure 10, removing an average of 8.7 points (per 100 
replicates) from the hulls in Figure 11.  
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Figure 12:  Concentration ellipses which enclose 95% of the points, assuming bivariate normal 
distribution of each subcloud.  
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Figure 13:  95% concentration ellipses based on the delta method (Gifi 1990).  
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