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Abstract

The classical binary classi�cation problem is investigated when it is known in ad-

vance that the posterior probability function (or regression function) belongs to some

class of functions. We introduce and analyze a method which e�ectively exploits this

knowledge. The method is based on minimizing the empirical risk over a carefully

selected \skeleton" of the class of regression functions. The skeleton is a covering of

the class based on a data-dependent metric, especially �tted for classi�cation. A new

scale-sensitive dimension is introduced which is more useful for the studied classi�cation

problem than other, previously de�ned, dimension measures. This fact is demonstrated

by performance bounds for the skeleton estimate in terms of the new dimension. 1

1Parts of the paper were presented at COLT'96 [15].
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1 Introduction

The following pattern classi�cation problem is investigated: let (X;Y ) be a pair of random

variables, taking their values from some set X and f0; 1g, respectively. The value of the label
Y is to be predicted upon observing the feature vector X. The prediction rule or classi�er g

is a function X ! f0; 1g, whose performance is measured by the probability of error

L(g) = Pfg(X) 6= Y g:

The joint distribution of (X;Y ) is determined by the regression function

��(x) = PfY = 1jX = xg

(also known as the a posteriori probability function) and the measure � of X on X , that is,

�(A) = PfX 2 Ag for each measurable set A � X .

The Bayes classi�er

g�(x) =

8<: 0 if ��(x) < 1=2

1 otherwise

is well-known to have minimal probability of error among all possible classi�ers. Its error

probability L(g�) is called the Bayes risk, and is denoted by L�.

Recall that if � : X ! [0; 1] is an arbitrary measurable function, and we de�ne the

corresponding classi�er by

g(x) =

8<: 0 if �(x) < 1=2

1 otherwise,

then the following elementary property holds:

L(g)� L� = 2E

�
Ifg(X)6=g�(X)g

������(X)� 1

2

�����
� 2E

n
Ifg(X) 6=g�(X)g j��(X) � �(X)j

o
;

see, for example, [10, p.16]. (IA denotes the indicator of an event A.)

Assume that n independent copies of (X;Y ) form the available data sequence:

Dn = ((X1; Y1); : : : ; (Xn; Yn)):

These data may be used to obtain the classi�cation rule gn(x), whose probability of error is

the random variable

L(gn) = Pfgn(X) 6= Y jDng:
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Very often, apart from the training sequence, some prior information is available about

the joint distribution of (X;Y ). For example, in some applications with X = Rd, it is known

that �� is a monotone function in all components of x. In other situations it may be known

that �� is a smooth function. In the basic pac-learning setup [8], �� is known to be the

indicator function of one of the sets in a given class of sets. We assume throughout that ��

is a member of a known class of functions F . In the next section we present a classi�cation

rule that �rst forms a �nite skeleton of F based on a part of the training data, and then

uses the other half of the data to select the empirically best candidate from the skeleton.

An upper bound for the performance of the skeleton estimate is given in Theorem 1.

The bound is formulated in terms of some covering numbers of F , speci�cally suited for the

classi�cation problem.

In Section 3 we introduce a new \scale-sensitive" dimension for classes of functions, and

relate it to the covering numbers appearing in Theorem 1. The new dimension is closely

related to a dimension introduced by Kearns and Shapire [13] whose usefulness have been

demonstrated for learning \probabilistic concepts" and for more general regression function

estimation problems, see also Alon, Ben-David, Cesa-Bianchi, and Haussler [1], Bartlett,

Long, and Williamson [6], Bartlett and Long [5], Bartlett [4], Anthony and Bartlett [2],

Shawe-Taylor, Bartlett, Williamson, and Anthony [19]. Other dimensions of similar type

have also been introduced, see [1] for a survey. However, these dimensions are not quite

adequate for the binary classi�cation problem as they do not capture the particular properties

of the classi�cation problem when the probability of error is used as the measure of loss. We

point out in Section 3 that the new dimension is more useful in the particular situation we

are investigating.

2 A data-based skeleton estimate

In this section we describe the proposed classi�cation rule. First, the data sequence Dn is

split into two parts:

Dm = ((X1; Y1); : : : ; (Xm; Ym))

and

Tn�m = ((Xm+1; Ym+1); : : : ; (Xn; Yn)):

The �rst part, Dm, is used to create a skeleton of F , that is, a �nite subset F� of F such

that each member of F is closely approximated by a function from F� in a carefully chosen

metric. More precisely, given � > 0, let F� � F be a class of functions of minimal cardinality
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satisfying the property that for each � 2 F there exists an �� 2 F� such that

1

m

mX
i=1

2Ifg(Xi)6=�g(Xi)gj�(Xi)� ��(Xi)j < �; (1)

where

g(x) =

8<: 0 if �(x) < 1=2

1 otherwise

and

�g(x) =

8<: 0 if ��(x) < 1=2

1 otherwise

are the corresponding classi�ers. The second part of the data, Tn�m, is used to test all

classi�ers de�ned by functions in F�, and to select one with minimal empirical error. In

other words, we select the classi�er �g = If���1=2g with �� 2 F�, if

Ln�m(�g) =
1

n�m

nX
i=m+1

If�g(Xi)6=Yig

is minimal among all rules in F�. The choice of the metric used in the empirical covering

is motivated by (1). We take the liberty of using L(g) and L(�) (and similarly Ln�m(g)

and Ln�m(�)) interchangeably. Denote the obtained classi�cation rule by gn (and the cor-

responding regression function by �n). Note that gn ignores the values of Y1; : : : ; Ym, and

therefore it may make e�cient use of additional unlabeled samples, if available. The �rst

half of the sample is only used to obtain information about �. We have the following key

property.

Theorem 1 Assume that �� 2 F . Then for all n;m; �, and � � 6�,

PfL(gn) � L� > 3�g � (E fjF�jg+ 1) e�
3
8
(n�m)�2=(L�+3�) + 8E

n
jF�=16j

o
e�m�=256:

Corollary 1 Assume that �� 2 F . If m = n=2, then for all n

EfL(gn)g � L� � max

0BB@
vuut6L� log

�
8nE

n
jF�=16j

o�
n

;
512 log

�
8nE

n
jF�=16j

o�
n

1CCA +
1

n

provided that � satis�es the inequality

� � 1

6
max

0BB@
vuut6L� log

�
8nE

n
jF�=16j

o�
n

;
512 log

�
8nE

n
jF�=16j

o�
n

1CCA :
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Proofs are given in Section 4.

Thus, the rate of convergence of the error of the selected classi�er is determined by the

logarithm of the expected value of the covering number jF�j. The condition on � is always

satis�ed if we take � = 85=n, but this may not be a good choice in some situations: if

jF�j is very large, much larger values of � may be advantageous. Better values of � may be

obtained by bounding the covering numbers. However, is not the purpose of this paper to

explore this direction in depth. The main message is that the expected size of the error is

of the order of
q
L� log (E fjF�jg) =n, unless the Bayes error L� is very small (of the order of

log (E fjF�jg) =n), in which case an even smaller bound, of the order of log (E fjF�jg) =n is

achievable.

It is worth comparing E fjF�jg to other quantities relevant for analyzing the performance

of certain classi�cation rules. Perhaps the most natural way of selecting a classi�er from

a class is empirical risk minimization: one selects a classi�er gn by minimizing, over all

g = If�>1=2g, � 2 F , the empirical error (1=n)
P

n

i=1 Ifg(Xi)6=Yig. Then an inequality of Vapnik

and Chervonenkis [20] (see also [3]) implies a bound analogous to that of Theorem 1, but

with E fjF�jg replaced by E fSF (n)g, where SF (n) is the random shatter coe�cient of the

class F , that is, the number of di�erent ways the members of F can classify the n i.i.d.

random variables X1; : : : ;Xn. But it is easy to see that for all � � 2=m,

E fjF�jg � E fSF(m)g :

(Note that the recommended choice for � is always larger, and in some cases much larger

than 2=m.) Thus, for the data-dependent skeleton classi�er, Theorem 1 guarantees better

performance than the above inequalities for empirical risk minimization. The reason why

it is possible to improve on these bounds is that one can make use of the additional infor-

mation provided by the knowledge of the form of the possible regression functions. That

the improvement may be essential, can be seen from the simple example in which F is

the class of all Lipschitz functions � : [0; 1]d ! [0; 1]. Then it is easy to see that for all

distributions log (E fjF�jg) = O
�
��d

�
, while for each absolutely continuous distribution of

X, E fSF (n)g = 2n for each n. For example, in Theorem 1, � may be chosen of the order

of n�1=(2+d), which results in an upper bound of the order of n�1=(2+d) for the error of the

data-dependent skeleton estimate. At the same time, no nontrivial bound can be obtained

for empirical risk minimization.

We must remark here, however, that in order to obtain Theorem 1, we needed to assume

that �� 2 F , that is, the \true" regression function is the member of the class F . The

bounds obtained for empirical risk minimization do not require this assumption. Empirical

risk minimization is, therefore, much more robust than the skeleton estimate introduced
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here.

Another approach to the classi�cation problem is to directly estimate the regression

function �� by a function �n. For the probability of error of the corresponding classi�er

gn(x) = If�n(x)�1g, we have from (1) that

L(gn)� L� � 2E fj��(X)� �n(X)jjDng :

The bounds for the probability of error of classi�ers based on the empirical squared or L1

error typically involve L1 or related covering numbers, see, for example, [2, 4, 1, 16], and [10,

Chapters 28,29]. In all cases, E fjF�jg compares favourably to these covering numbers. The

reason is the presence of the factor Ifg(Xi)6=�g(Xi)g in the de�nition of the distance (1) according

to which the covering number jF�j is de�ned. Instead of detailing such (trivial) inequalities,

we refer to Section 3, where jF�j is estimated in terms of a new dimension. Bounds for the

probability of error obtained through bounds for regression function estimation are generally

loose, and results of function learning and regression function estimation have little to say in

this situation. Consider, for example, the following trivial case: let F contain all functions

� : R ! [0; 1] such that �(x) < 1=2 if x < 0 and �(x) � 1=2 if x � 0. Then there is only

one classi�er induced by these functions, and accordingly, jF�j = 1. On the other hand, this

class is clearly too large for obtaining meaningful bounds for regression function estimation.

In the next section we quantify this observation in terms of a dimension of F , which is

always smaller than those that have been proved useful in the regression function estimation

scenario.

3 A new scale-sensitive dimension

Next we de�ne a dimension for a class F of functions X ! [0; 1].

De�nition 1 Let 0 < 
 � 1=2. We say that F 
-shatters a �nite set A � X if there exists

some function s : A ! [(1 � 
)=2; (1 + 
)=2] such that for every subset E � A there is a

function �E 2 F such that �E(x) � s(x)+
 if x 2 E and �E(x) � s(x)�
 if x 2 A�E. The

largest positive integer n for which there exists a set A of cardinality n which is 
-shattered

by F is denoted by d
. If for every n there is a set A which is 
-shattered by F then we say

that d
 =1. The 
-dimension of F is de�ned as D
 = inf��
 d�.

Our main result concerning D
 is an upper bound for the covering numbers appearing in

Theorem 1 in terms of the 
-dimension:
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Theorem 2 For any value of X1; : : : ;Xm, if 36m � d4=�e, � � 1, then

jF�j � 2(72m)D�=5 log2(2m):

The proof of this theorem is based on the proof of Lemma 3.4 of Alon, Ben-David,

Cesa-Bianchi, and Haussler [1], and it is given in Section 5.

We may combine the above result with Theorem 1 to obtain the following sample-size

bound for the data-dependent skeleton estimate de�ned in Section 2:

Corollary 2 Assume that �� 2 F . Let m = bn=2c. For any �; � > 0,

PfL(gn)� L� > �g � �

if

n = O

  
D�=80 log

2

 
D�=80

�

!
+ log

1

�

!
max

�
L�

�2
;
1

�

�!
:

d
 is closely related to the so-called P
-dimension introduced by Kearns and Shapire [13].

The only di�erence is that in the de�nition of P
 the range of the shattering function s is

not restricted, it can take any value in [0; 1]. Therefore, clearly, for every 
,

D
 � d
 � P
 :

In fact, D
 may be �nite even if P
 =1 for every 
. (Just consider the class of all functions

� : R ! [0; 1] such that �(x) < 1=2 if x � 0 and �(x) � 1=2 if x > 0.) The restriction of

the range of s is motivated by the fact that from the point of view of classi�cation, only the

behavior of the functions in F around 1=2 matters. For some discussion on this we refer to

Section 6.7 of [10]. It is clear that P
 is a monotonically decreasing function of 
. Because of

the restriction of the range of s in the de�nition of 
-shattering, as the next example shows,

this monotonicity is no longer true for d
 , which justi�es the de�nition of the 
-dimension

D
 . D
 is obviously monotonically decreasing in 
.

Example. Let 0 < a < 1=3, and let F be the class of all functions � : R ! [0; 1] such that

�(x) > 1=2 + 3a=2 if x > 0 and �(x) < 1=2 � a=2 if x � 0. Then it is clear that if 
 � a,

then d
 < 2, while for 
 > a, d
 =1. 2

We de�ne the vc dimension V of F as the vc dimension of the class of classi�ers induced

by F , that is, as the vc dimension of the class of sets of the form fx : �(x) > 1=2g, � 2 F .
Then clearly,

D
 � V
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for each 
. Again, D
 may be �nite even if V =1. As a simple example, consider the class

of Lipschitz functions on [0; 1]. Then D
 � P
 = O(1=
), but obviously V = 1. (Note

that V is di�erent from the \V -dimension" discussed in [1].) In a distribution-free setting, V

basically describes the minimax behavior of the probability of error, see, for example, [20, 10].

For example, it is shown by Vapnik and Chervonenkis [20] that there exists a classi�cation

rule gn and a constant c such that for any distribution of the pair (X;Y ),

EL(gn)� inf
�2F

L(�) � cmax

0@sV inf�2F L(�) log n

n
;
V log n

n

1A :

On the other hand, for any classi�cation rule gn, there exists a distribution of (X;Y ) such

that

EL(gn)� inf
�2F

L(�) � c0max

0@sV inf�2F L(�)

n
;
V

n

1A
for some other constant c0, see [11, 10]. The reason why we can improve on the above upper

bound is that we no longer work in a completely distribution-free setting but we assume

�� 2 F , and we are able to exploit this additional information.

It is easy to see that no universal relationship exists between V and P
 . In fact, if F is

the class of all functions on R whose value is in [0; 1=2] if x < 0 and in (1=2; 1] if x > 0 then

V = 1 but P
 =1 for every 
. On the other hand, if F contains every function de�ned on

the positive integers such that j�(x) � 1=2j � e�x=2, then P
 = b� log(2
)c, but V = 1.

(The latter example is taken from [1].) Since D
 � max(V; P
), we may interpret the new

dimension as one that uni�es the advantages of V and the scale-sensitive dimension P
 .

Finally, we indicate some points where the bound of Theorem 2 is lose. First of all, the

theorem provides an upper bound for the maximal possible value of jF�j, whereas the inter-
esting quantity in Theorem 1 is its expected value E fjF�jg. In certain cases, the di�erence

may be signi�cant: [10, Theorem 13.13] provides such an example.

If F is a class of indicator functions, then jF�j is just the random shatter coe�cient

SF (m) for � = 2=m. In this case Sauer's lemma [18] implies that log jF�j � V logm, whereas

Theorem 2 only gives log jF�j = O(V log2m).

If F is the class of all Lipschitz functions (with Lipschitz constant 1) on [0; 1], then it is

easy to see that log jF�j = O(1=�). However, it is also easy to see that D� = O(1=�), and

therefore Theorem 2 only implies log jF�j = O
�
log2m

�

�
. However, the practical importance

of the log factors is minor, so Theorem 2 may be a useful tool to bound jF�j.
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4 Proof of Theorem 1

In the proof of Theorem 1 we apply an inequality of Pollard [17], sharpened by Haussler [12].

In particular, the following corollary is used, which was obtained by Buescher and Kumar

[9] in a slightly di�erent form. The form given here is found in Lugosi and Nobel [14].

Lemma 1 Let H be class of functions on X such that h(x) 2 [0; A] for every h 2 H and

every x 2 X . Let X1; : : : ;Xm 2 X be i.i.d. random vectors. Then for each � > 0 and, � > 0,

P

8<: sup
h2H: 1

m

Pm

i=1
h(Xi)<�

Efh(X)g > � + 3�

9=; � 4E
n
jH�=16j

o
e�m(�+�)=(64A);

where H� is any set of functions satisfying the property that for each h 2 H there is a h0 2 H�

with
1

m

mX
i=1

jh(Xi)� h0(Xi)j < �:

The basic idea of the next lemma may be found in Vapnik and Chervonenkis [20].

Lemma 2 Let b� be an element of F� such that L(b�) = min�2F� L(�). Then

PfL(gn)� L(b�) > 2�jDmg

� PfLn�m(b�)� L(b�) > �jDmg+P

8<:max
�2F�

L(�)� Ln�m(�)q
L(�)

>
�q

L(b�) + 2�

������Dm

9=; :

Proof. If L(gn)� L(b�) > 2�, then there exists an � 2 F� such that L(�) > L(b�) + 2� and

Ln�m(�) � Ln�m(b�). Thus,
PfL(gn)� L(b�) > 2�jDmg

� P

(
min

�:L(�)>L(b�)+2�
Ln�m(�) < Ln�m(b�)

�����Dm

)

� P

(
min

�:L(�)>L(b�)+2�
Ln�m(�) < L(b�) + �

�����Dm

)
+PfLn�m(b�) > L(b�) + �jDmg;

so we need to show that

P

(
min

�:L(�)>L(b�)+2�
Ln�m(�) < L(b�) + �

�����Dm

)
� P

8<:max
�2F�

L(�)� Ln�m(�)q
L(�)

>
�q

L(b�) + 2�

������Dm

9=; :

(2)

But if

max
�2F�

L(�)� Ln�m(�)q
L(�)

� �q
L(b�) + 2�

;
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then for each � 2 F�

Ln�m(�) � L(�)� �

vuut L(�)

L(b�) + 2�
:

If, in addition, � is such that L(�) > L(b�) + 2�, then by the monotonicity of the function

x� c
p
x (for c > 0 and x > c2=4),

Ln�m(�) � L(b�) + 2� � �

vuutL(b�) + 2�

L(b�) + 2�
= L(b�) + �;

and (2) follows. 2

Proof of Theorem 1. Write

L(gn)� L� =

�
L(gn)�min

�2F�
L(�)

�
+

�
min
�2F�

L(�)� L�
�
;

so that

PfL(gn)� L� > 3�g � P

�
L(gn)�min

�2F�
L(�) > 2�

�
+ P

�
min
�2F�

L(�)� L� > �

�
: (3)

First we bound the second probability. Introduce the notation

Jm(�) =
2

m

mX
i=1

Ifg(Xi) 6=g�(Xi)g j��(X)� �(X)j ;

and

J(�) = EfJm(�)g = 2E
n
Ifg(X)6=g�(X)g j��(X)� �(X)j

o
for all � 2 F . Recall that by (1), L(�) � L� � J(�), and that min�2F� Jm(�) < � by the

de�nition of F� and by the assumption �� 2 F . Therefore,

min
�2F�

L(�)� L� � min
�2F�

J(�) � sup
�2F:Jm(�)<�

J(�):

Therefore, for � � 6�,

P

�
min
�2F�

L(�)� L� > �

�
� P

(
min
�2F�

L(�)� L� >
�

2
+ 3�

)

� P

(
sup

�2F:Jm(�)<�

J(�) >
�

2
+ 3�

)

� 4E
n
jF�=16j

o
e�m�=256 (4)

by Lemma 1.
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To bound the �rst probability on the right-hand side of (3), we apply Lemma 2. First,

since given Dm, the conditional distribution of (n�m)Ln�m(b�) is binomial with parameters

n�m and L(b�), we have by Berstein's inequality [7] that

PfLn�m(b�)� L(b�) > �jDmg � e�(n�m)�2=(2L(b�)+ 2
3
�):

(Recall that b� minimizes the probability of error in F�.) On the other hand, clearly

P

8<:max
�2F�

L(�)� Ln�m(�)q
L(�)

>
�q

L(b�) + 2�

������Dm

9=;
� jF�jmax

�2F�
P

8<: L(�)� Ln�m(�)q
L(�)

>
�q

L(b�) + 2�

������Dm

9=; :

For any �xed �, the probability on the right-hand side is zero if 

def
= �=

q
L(b�) + 2� >

q
L(�).

Otherwise, if 
 �
q
L(�), then again by Bernstein's inequality,

P

8<: L(�)� Ln�m(�)q
L(�)

>
�q

L(b�) + 2�

������Dm

9=;
= P

�
L(�)� Ln�m(�) > 


q
L(�)

����Dm

�
� e

� (n�m)
2L(�)

2L(�)+2
p
L(�)
=3

� e�
3
8
(n�m)
2

= e�
3
8
(n�m)�2=(L(b�)+2�):

Therefore, by Lemma 2,

P fL(gn)� L(b�) > 2�jDmg � (jF�j+ 1) e�
3
8
(n�m)�2=(L(b�)+2�): (5)

Finally,

P fL(gn)� L(b�) > 2�g
� P fL(gn)� L(b�) > 2�jL(b�)� L� � �g+P fL(b�)� L� > �g
� (E fjF�jg+ 1) e�

3
8
(n�m)�2=(L�+3�) + 4E

n
jF�=16j

o
e�m�=256;

where we used (4) and (5). Collecting bounds, the proof is �nished. 2

Proof of Corollary 1. Assume � � 6�. Observe that if � � L�=93, then

PfL(gn)� L� > 3�g � 8E
n
jF�=16j

o
e�n�=512;
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and otherwise

PfL(gn)� L� > 3�g � 8E
n
jF�=16j

o
e�n�

2
=(6L�):

Thus, for any u > 6�,

EL(gn)� L� � 3u+PfL(gn)� L� > 3ug
� 3u+max

�
8E

n
jF�=16j

o
e�nu=512; 8E

n
jF�=16j

o
e�nu

2
=(6L�)

�
:

Chosing

u = max

0BB@512 log
�
8nE

n
jF�=16j

o�
n

;

vuut6L� log
�
8nE

n
jF�=16j

o�
n

1CCA ;

yields the corollary. 2

5 Proof of Theorem 2

The line of the proof of Theorem 2 is analogous to that of Lemma 3.4 in [1]. Just like there,

we also begin with \discretizing." First we introduce a discrete analogue of the 
-dimension,

related to the \strong dimension" of [1].

Let b be a positive even integer, and let G be a class of functions X ! f1; 2; : : : ; bg. We

say that G b-shatters a �nite set A � X according to a function s : A! fb=2�1; b=2; b=2+1g
if to every subset E of A, there exists a function fE 2 G such that

fE(x)

8<: � s(x)� 3 if x 2 E

� s(x) + 3 if x 2 A� E.

We say that G b-shatters A if G b-shatters A according to some s. The b-dimension �b of G
is the largest integer n such that there exists a set A, shattered by G, with jAj = n. If there

is no such larger integer, then we say that �b =1.

Let � > 0. The �-discretization of a function � : X ! [0; 1] is de�ned by ��(x) = b�(x)=�c.

Lemma 3 Let F
 = f�
 : � 2 Fg denote the class of 
-discretizations of functions in F .
Assume that 
 = 1=b for some positive even integer b. If �b denotes the b-dimension of F
,

then

�b � d2
;

where d2
 is de�ned in De�nition 1 for F .
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Proof. We show that if F
 b-shatters a set A, then F 2
-shatters A. Let s : A !
fb=2 � 1; b=2; b=2 + 1g be the function which is used by F
 to b-shatter A. Then for every

E � A there is a function �E 2 F such that

�



E
(x)

8<: � s(x)� 3 if x 2 E

� s(x) + 3 if x 2 A� E.

Then clearly,

�E(x)

8<: � 
s(x)� 2
 if x 2 E

� 
s(x) + 3
 if x 2 A� E.

Then with s0(x) = 
s(x), F clearly 2
-shatters A. 2

Next we relate jF�j to certain packing numbers of the class of discretizations of functions

in F . Let fx1; : : : ; xmg � X . We say that a subset F 0 of F is �-separated if for any �1; �2 2 F 0,

1

m

mX
i=1

2Ifg1(xi)6=g2(xi)gj�1(xi)� �2(xi)j � �:

The maximal size M(�;F) of such an �-separated set is called the �-packing number of F .
Now consider a class G of functions X ! f1; : : : ; bg, where b is an even positive integer. We

say that G0 � G is 4-separated if for any f1; f2 2 G0,

max
i=1;:::;m

jf1(xi)� f2(xi)jIfu(f1(xi)) 6=u(f2(xi))g;

where the function u is de�ned by

u(a) =

8>><>>:
1 if a > b=2
1
2

if a = b=2

0 if a < b=2:

The maximal size of a 4-separated subset of G is denoted by Mb(4;G). The proof of the next
lemma is trivial.

Lemma 4 Let 
 � �=8 such that b = 1=
 is a positive even integer. Then

jF�j �M(�;F) �Mb(4;F
):

The key of the proof of Theorem 2 is the following combinatorial lemma:

Lemma 5 Let X be a set of cardinality m, and let G be a class of functions X ! f1; : : : ; bg,
where b is an even positive integer and m � b=72. Then

Mb(4;G) � 2(72m)log2 y; where y =
�bX
i=1

 
m

i

!
3i

and �b is the b-dimension of G.

12



Proof. We may assume that b � 5 since otherwise there are no two 4-separated functions

in G and the statement is trivial. Let A � X and s : A ! fb=2 � 1; b=2; b=2 + 1g. We say

that G b-shatters the pair (A; s) if it b-shatters A according to s. To any k � 2 and m � 1,

de�ne t(k;m) as the largest integer t such that if H is any 4-separated class of functions

with jHj = k, then H b-shatters at least t distinct pairs (A; s). If no such H exists, then we

say that t(k;m) =1: (Recall that m = jX j.)
Clearly, the number of possible pairs (A; s) such that jAj � d is at most y =

P
d

i=1

�
m

i

�
3i.

Thus, if t(k;m) > y for some k, then Mb(4;G) < k whenever �b � d. Therefore, we need to

show that t
�
2(72m)blog2 yc;m

�
> y for all d � 1, m � 1.

We see immediately that t(2;m) = 1 for all m � 1. Next we show that

t(144km;m) � 2t(2k;m� 1): (6)

If there is no 4-separated class with size 144km, then the left-hand side of (6) is 1, and

the inequality is trivially true. Thus, assume that there is a 4-separated class H with size

144km. Split H into 72km pairs of functions. For each such pair (h1; h2),

max
x2X

jh1(x)� h2(x)jIfu(h1(x)) 6=u(h2(x))g � 4

that is, for each such pair there exists an x 2 X such that jh1(x)�h2(x)j � 4 and u(h1(x)) 6=
u(h2(x)). Since jX j = m, there exists an x 2 X such that this property holds for at least

72k pairs. For j 2 f1; : : : ; bg, de�ne

� (j) =

8>><>>:
1 if j � b=2 � 4

i if j = b=2 � 5 + i, i = 2; 3; : : : ; 8

9 if j � b=2 + 4:

By the pigeonhole principle, there are at least 72k=
�
9

2

�
= 2k pairs (h1; h2) for which the set

f� (h1(x); h2(x))g is the same. Then it follows that there are two subclasses H1;H2 � H and

indeces i; j 2 f1; : : : ; 9g with jH1j = jH2j = 2k such that for each h1 2 H1, � (h1(x)) = i, for

each h2 2 H2, � (h2(x)) = j, and i � j + 4. Clearly, the members of H1 are 4-separated on

X � fxg, and the same is true for H2. Thus, according to the de�nition of t(k;m), H1 and

H2 both b-shatter t(2k;m� 1) pairs (A; s) with A � X � fxg.
Clearly, H b-shatters every pair (A; s) which is b-shattered by either H1 or H2. Also, if

a pair (A; s) is b-shattered by both H1 and H2, then it is easy to see that H b-shatters the

pair (A [ fxg; s0), where s0(z) = s(z) if z 2 A, and

s0(x) =

8>><>>:
b=2 + 1 if j = 5

b=2� 1 if i = 5

b=2 otherwise:

13



Therefore, H b-shatters at least as many (A; s) pairs as the sum of the numbers of pairs

shattered by H1 and H2, so (6) is proved.

Let now n = 2(72m)(72(m � 1)) � � � (72(m � r + 1)), where r � m. Then by repeated

application of (6), we obtain

t(n;m) � 2rt(2; n� r) = 2r:

Since t is monotone in its �rst argument, for all r � m,

t(2(72m)r;m) � 2r:

Take r = dlog2 ye. If r � m, then

t(2(72m)dlog2 ye;m) � 2dlog2 ye > y;

as desired. If r > m, then 2(72m)r > 2(72m)m > bm by the condition 72m � b. But bm is

the number of all functions from X to f1; : : : ; bg, so there is no 4-separated class larger than

this, hence t(2(72m)dlog2 ye;m) =1 > y, establishing the lemma. 2

Proof of Theorem 2. Let 
 = 1=(2d4=�e) and b = 1=
. Then

jF�j � Mb(4;F
) (by Lemma 4)

� 2(72m)log2(
P�b

i=1 (
m
i )3

i) (by Lemma 5)

� 2(72m)
log2

�Pd2

i=1 (

m
i )3

i

�
(by Lemma 3)

� 2(72m)d�=5 log2(2m)

by bounding with Stirling's formula. But clearly,

jF�j = inf
���

jF�j � inf
���

2(72m)d�=5 log2(2m) = 2(72m)D�=5 log2(2m);

as desired. 2
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