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Abstract

Background: Muscle-invasive bladder cancer (MIBC) is a molecularly diverse disease
with heterogeneous clinical outcomes. Several molecular classifications have been
proposed, but the diversity of their subtype sets impedes their clinical application.
Objective: To achieve an international consensus on MIBC molecular subtypes that
reconciles the published classification schemes.
Design, setting, and participants: We used 1750 MIBC transcriptomic profiles from
16 published datasets and two additional cohorts.
Outcome measurements and statistical analysis: We performed a network-based anal-
ysis of six independent MIBC classification systems to identify a consensus set of
molecular classes. Association with survival was assessed using multivariable Cox
models.
Results and limitations: We report the results of an international effort to reach a
consensus on MIBC molecular subtypes. We identified a consensus set of six molecular
classes: luminal papillary (24%), luminal nonspecified (8%), luminal unstable (15%),
stroma-rich (15%), basal/squamous (35%), and neuroendocrine-like (3%). These consen-
sus classes differ regarding underlying oncogenic mechanisms, infiltration by immune
and stromal cells, and histological and clinical characteristics, including outcomes. We
provide a single-sample classifier that assigns a consensus class label to a tumor
sample’s transcriptome. Limitations of the work are retrospective clinical data collection
and a lack of complete information regarding patient treatment.
Conclusions: This consensus system offers a robust framework that will enable testing
and validation of predictive biomarkers in future prospective clinical trials.
Patient summary: Bladder cancers are heterogeneous at the molecular level, and
scientists have proposed several classifications into sets of molecular classes. While
these classifications may be useful to stratify patients for prognosis or response to
treatment, a consensus classification would facilitate the clinical use of molecular
classes. Conducted by multidisciplinary expert teams in the field, this study proposes
such a consensus and provides a tool for applying the consensus classification in the
clinical setting.
© 2019 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bladder cancer is one of the most frequently diagnosed
cancers in North America and Europe. Most bladder cancers
are urothelial carcinomas, and are classified as either non–
muscle-invasive bladder cancer (NMIBC) or muscle-
invasive bladder cancer (MIBC), due to distinct implications
for patient management. MIBC is usually diagnosed de novo
but may arise from the 10–20% of NMIBC cases that
eventually progress. MIBC is a more aggressive disease
state, and is associated with a 5-yr survival rate of 60% for
patients with localized disease and <10% for patients with
distant metastases.

At the molecular level, MIBC is a heterogeneous
disease that is characterized by genomic instability and
a high mutation rate. Transcriptome profiling facilitates
bladder cancer classification into molecular subtypes, for
a more precise patient stratification according to prog-
nosis and therapeutic options. A number of teams have
reported molecular classifications of bladder cancers.
Several expression-based schemes have been proposed,
either considering the full spectrum of nonmetastatic
bladder cancers [1–6], or focusing separately either on
NMIBC [7,8] or on MIBC [9–16]. These classifications have
considerably advanced our understanding of bladder
cancer biology. Specific genomic alterations are enriched
Please cite this article in press as: Kamoun A, et al. A Consensus M
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in particular molecular subtypes, including mutations
targeting genes involved in cell cycle regulation, chroma-
tin remodeling, and receptor tyrosine kinase signaling.
Importantly, several reports have highlighted the clinical
significance of molecular stratification of MIBC, by
suggesting that responses to chemotherapy and immu-
notherapy may be enriched in specific MIBC subtypes
[12,17–19].

Published MIBC classifications were derived from largely
nonoverlapping datasets, using different methods at least
for some steps of their respective unsupervised class
discovery pipelines (Supplementary Table 1). Nonetheless,
they share many characteristics, including subtype-specific
molecular features, and a strong overlap has been observed
between some subtypes from distinct classification systems
[20]. In an initial effort to define features common to all
MIBC classifications, Lerner et al. [21] proposed a consensus
basal/squamous subtype and reported evidence of a
muscle-invasive subtype with urothelial differentiation
features. However, the six published classification systems
that were considered in their work still differ in the number
and relative size of subtypes, and in the use of different
subtype names. This diversity has impeded transferring
subtypes into clinical practice and highlights that establish-
ing a single consensus set of molecular subtypes would
facilitate achieving such a transfer.
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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2. Patients and methods

2.1. Transcriptomic profiles analyzed

We used 1750 MIBC transcriptomic profiles from 18 datasets
to compare six molecular classification schemes and derive a
consensus classification. Details of datasets, including their
respective normalizations, are given in Supplementary Table 2.

2.2. Consensus classification construction

Transcriptomic classifiers for six published classification
systems [9–13,16] were provided and/or validated by the
respective teams. These classifiers were merged into an R
package (R Foundation for Statistical Computing, Vienna,
Austria) that is documented and freely available at https://
github.com/cit-bioinfo/BLCAsubtyping.

We applied these classifiers on each of the 18 datasets
independently to assign each sample to a subtype in each of
the six classification systems. We used a previously
validated network-based approach [22] on these subtyping
results to identify consensus classes that reconcile the
molecular subtypes from the six classification schemes.
Briefly, we built a weighted network of subtyping results,
using Cohen’s kappa metric to quantify similarities between
subtypes from different classification systems, and applied
a Markov cluster algorithm to identify robust network
substructures corresponding to potential consensus classes.
The analysis workflow is summarized in Supplementary Fig.
1 and algorithm details are given in the Supplementary
material (Methods). We used a silhouette-based metric to
select the most robust consensus solution among those
with consensus classes defined by at least three of the six
input classification systems.

2.3. Single-sample transcriptomic consensus classifier

construction

The network of consensus classes also revealed a core set of
consensus samples (see Supplementary material, Methods),
that is, tumor samples representative of each consensus class
on the basis of their initial subtyping by the six classification
systems. We used these core samples (n = 1084) to build a
single-sample transcriptomic classifier, as detailed in the
Supplementary material (Methods). The classifier was trained
on approximately one-third of these samples (n = 403) and
achieved 97% mean balanced accuracy on the remaining two-
thirds of the core samples (n = 681). This classification tool
was implemented as an R package.

We also offer a stand-alone web application that allows
users to classify new samples using the single-sample
classifier. By design, it does not store any user data and can
be used completely anonymously. The consensusMIBC web
application is available at http://consensusMIBC.curie.fr.

2.4. Statistical analyses

We measured associations between consensus classes and
categorical variables by Fisher’s exact test, with Monte-Carlo
Please cite this article in press as: Kamoun A, et al. A Consensus M
Urol (2019), https://doi.org/10.1016/j.eururo.2019.09.006
simulations when necessary. For continuous variables, we
evaluated differences by Kruskal-Wallis tests or LIMMA
moderated t tests (limma v3.39.1 R package). False
discovery rate adjustment of p values was performed to
control for multiple testing, for association tests between
the consensus classes and either genetic or histological
variables, as these types of variables might be interpreted
as potential diagnostic or theranostic biomarkers of some
consensus classes. We reported unadjusted p values
otherwise.

We built a multivariable Cox model integrating consen-
sus classes and clinical risk factors. We used Wald tests to
assess survival differences associated with different levels
of a given factor included in the Cox models. For each factor
level, we computed hazard ratios (HRs) and 95% confidence
intervals (CIs). We constructed Kaplan-Meier curves to
visualize overall survival stratified by consensus class and
used log-rank tests to compare the survival of correspond-
ing patient groups.

All statistical and bioinformatics analyses were per-
formed with R (v3.5.1).

3. Results

3.1. Published molecular classifications of MIBC converge on six

classes

We used six published MIBC molecular classifications to
define a unified consensus subtyping system, following the
approach outlined in Supplementary Fig. 1 and described in
the Supplementary material (Methods). We refer to these
input classifications as Baylor [16], University of North
Carolina (UNC) [10], MD Anderson Cancer Center (MDA)
[12], the Cancer Genome Atlas (TCGA) [9], Cartes d’Identité
des Tumeurs (CIT)-Curie [11], and Lund [13]. The methods
that defined these classifications are summarized in the
Supplementary material (Methods) and Supplementary
Table 1.

Our analysis converged on six biologically relevant
consensus molecular classes, which we labeled as luminal
papillary (LumP), luminal nonspecified (LumNS), luminal
unstable (LumU), stroma-rich, basal/squamous (Ba/Sq), and
neuroendocrine-like (NE-like; Fig. 1). Considerations moti-
vating our choices for these consensus names are detailed in
the Supplementary material (Note).

The six molecular classes had variable sample sizes, with
Ba/Sq and LumP being the largest (35% and 24% of all samples,
respectively). The remaining 41% of samples were LumU (15%),
stroma-rich (15%), LumNS (8%), and NE-like (3%) tumors
(Fig. 1B). The consensus classification was strongly associated
with each of the initial classification systems (Fisher simulated
p < 0.001; Fig. 1 and Supplementary Fig. 2A).

We compared the consensus classes with the TCGA
PanCancer Atlas integrative classification [23] (Supplemen-
tary Fig. 2C). We observed associations between the Ba/Sq
consensus class and the squamous cell carcinoma C27:Pan-
SCC pan-cancer cluster (p < 0.001), and between the
stroma-rich class and the stroma-driven C20:Mixed (stro-
mal/immune) pan-cancer cluster (p < 0.001).
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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Fig. 1 – The six consensus classes and their relation to input molecular subtypes. (A) MCL-clustered network. The six-consensus class solution obtained
with MCL clustering on the Cohen’s kappa-weighted network is represented by the six cliques surrounded by black dotted rectangles (see the
Supplementary material [Note] for the naming of consensus classes). The circles inside each clique symbolize the input subtypes associated with each
consensus class and are colored according to their matching classification system. Circle size is proportional to the number of samples assigned to the
subtype. Edge width between subtypes is proportional to the Cohen’s kappa score, which assesses the level of agreement between two classification
schemes. (B) Input subtypes repartitioned among each consensus class. Consensus classes were predicted on 1750 MIBC samples using the single-
sample classifier described in the Supplementary material (Methods). Here, the samples are grouped by their predicted consensus class labels: LumP,
LumNS, LumU, stroma-rich, Ba/Sq, and neuroendocrine (NE)-like. For each consensus class, a bar plot shows the proportion of samples assigned in
each input subtype of each input classification system. See also Supplementary Fig. 2 for additional visualization of consensus class distributions
across input subtypes and across datasets. (C) Relationship between subtyping results from the six input classification schemes. Samples are ordered
by predicted consensus classes.
Ba/Sq = basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal unstable; MCL = Markov cluster algorithm; MDA = MD
Anderson Cancer Center; MIBC = muscle-invasive bladder cancer; TCGA = the Cancer Genome Atlas; UNC = University of North Carolina.
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3.2. Transcriptomic characterization of the six consensus

molecular classes

We used mRNA data from all 1750 samples to characterize
consensus classes with molecular gene signatures for
Please cite this article in press as: Kamoun A, et al. A Consensus M
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bladder cancer pathways and for tumor microenvironment
infiltration (Fig. 2A and B, and Supplementary Table 3).

Differentiation-related mRNA signatures were strongly
associated with the consensus classes. Tumors from the
three luminal classes overexpressed urothelial differentia-
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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Fig. 2 – Characterization of tumor and stroma signals using published mRNA signatures and regulon analysis. Description of gene sets and detailed
statistics is available in Supplementary Table 3. (A) We performed a gene set analysis (GSA; see the Supplementary material, Methods) in each dataset
to test the significance of differential expression of specific bladder cancer–related signatures in each consensus class compared with the others. The
heatmaps show Stouffer combined GSA p values over all datasets. The upper panel refers to bladder cancer gene sets extracted from the ICA
components described in the study by Biton et al. [25] (see the Supplementary material, Methods). The lower panel displays other bladder cancer–
specific signatures retrieved from the literature: urothelial differentiation, keratinization, and late cell-cycle signatures from the study of Eriksson
et al. [24], and an FGFR3 coexpressed signature from the study of Sjödahl et al. [4]. (B) We used two mRNA-based computational tools to characterize
tumor microenvironments : ESTIMATE (R package, v1.1.0) infers the presence of stromal cells (stromal infiltration) and the infiltration of immune cells
(immune infiltration) in a tumor sample using two curated gene signatures described by Yoshihara et al. [26]; MCPcounter (R package, v1.0.13) uses
biologically validated transcriptomic markers of specific immune and stromal cell subpopulations to quantify the presence of these populations in a
tumor sample [27]. We ran MCPcounter and ESTIMATE independently on each dataset, and used t tests to compare scores for each consensus class
relative to the others. The heatmaps show Stouffer combined t test p values over all datasets. (C) We computed discrete regulon status (1 for active
regulon status, 0 for undefined status, and –1 for inactive regulon status) in each dataset, as described in the Supplementary material (Methods) and
in the work of Robertson et al. [9]. We evaluated the association between each regulon status and each consensus class using Fisher exact tests; the
heatmap illustrates the resulting p values.
Ba/Sq = basal/squamous; ICA = independent component analysis; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal unstable;
NE = neuroendocrine; NK = natural killer.
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tion signatures (p < 0.001), including the PPARG/GATA3/
FOXA1-related Lund signature [24]. In contrast, Ba/Sq and
NE-like tumors, respectively, overexpressed gene signatures
associated with basal (p < 0.001) and neuroendocrine
differentiation (p < 0.001).

In addition to their urothelial differentiation status, the
three luminal classes exhibited distinct molecular signa-
tures. LumP tumors were characterized by high expression
of a noninvasive Ta pathway signature [25] (p < 0.001) and
Please cite this article in press as: Kamoun A, et al. A Consensus M
Urol (2019), https://doi.org/10.1016/j.eururo.2019.09.006
were strongly associated with FGFR3 transcriptional activi-
ty, as estimated by an FGFR3 coexpressed gene signature [4]
(p < 0.001). LumNS tumors displayed elevated stromal
infiltration signatures, mainly fibroblastic, compared with
the other luminal tumors (p < 0.001). LumU tumors had a
higher cell cycle activity than the other luminal tumors
(p < 0.001).

Stroma-rich samples displayed intermediate levels of
urothelial differentiation. They were mainly characterized
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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by stromal infiltration as summarized by ESTIMATE stromal
scores [26], with overexpression of smooth muscle (p
< 0.001), endothelial (p < 0.001), fibroblast (p < 0.001), and
myofibroblast (p < 0.001) gene signatures.

Immune infiltration was mainly found within Ba/Sq and
stroma-rich tumors, but these two classes were associated
with distinct immune cell populations, as estimated by
MCPcounter signatures [27]. Ba/Sq tumors were enriched in
cytotoxic lymphocytes (p < 0.001) and natural killer cells
(p < 0.001), whereas stroma-rich tumors overexpressed T-
(p < 0.001) and B-cell (p < 0.001) markers. LumNS tumors
were the only luminal type associated with immune
infiltration signals; these were mainly for B (p = 0.002)
and T (p = 0.004) lymphocytes. We detected no transcrip-
tomic markers of immune infiltration in NE-like tumors. In
TCGA samples, an estimation of tumor purity with
ABSOLUTE [28] confirmed that stroma-rich and Ba/Sq
tumors contained higher levels of nontumor cells (Supple-
mentary Fig. 3).

Analyses of regulatory units (ie, regulons) for 23 regulator
genes previously reported as associated with bladder cancer
[9] were consistent with the assessed mRNA signatures
(Fig. 2C). Luminal tumors, which overexpressed strong
Fig. 3 – Genomic alterations associated with consensus classes. (A) We used th
association between consensus classes and specific gene mutations (see Supple
13 genes with MutSig values <0.02 found in >10% of all tumors. Gene mutatio
an asterisk. (B) Combined genomic alterations associated with seven bladder c
classes. Upper panels: main alteration types after aggregating CNA profiles (see
Stransky (n = 22), and TCGA (n = 404) data; exome profiles (n = 388) and FGFR3
MLPA data from CIT (n = 86 and n = 85, respectively) and Stransky (n = 16 and 

(n = 87), Iyer (n = 39), Sjödahl (n = 28), and Stransky (n = 35); TP53 mutation d
Stransky (n = 19); and RB1 mutation data from MDA (n = 66), CIT (n = 85), Iyer
consensus class, each type of gene alteration, and the combined alterations we
enriched with alterations of these candidate genes are marked with a black as
Ba/Sq = basal/squamous; CIT = Cartes d’Identité des Tumeurs; CNA = copy numbe
LumU = luminal unstable; MDA = MD Anderson Cancer Center; MIBC = muscle-in
Atlas.

Please cite this article in press as: Kamoun A, et al. A Consensus M
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urothelial differentiation signals, were associated with
active PPARG and GATA3 regulons (p < 0.001 for both
comparisons). FGFR3 regulon activity was specifically
associated with LumP tumors (p < 0.001), and Ba/Sq tumors
showed a strong association with STAT3 regulon activity
(p < 0.001), consistent with previous results [16,24]. Addi-
tionally, a regulon analysis showed an association of HIF1A
regulon activity with Ba/Sq tumors (p < 0.001), suggesting
that this class is associated with a hypoxic microenviron-
ment. Estimated glomerular filtration rate (EGFR) regulon
activity was specifically associated with Ba/Sq tumors (p
< 0.001), consistent with previously reported findings [11].

3.3. Genomic alterations associated with the consensus

molecular classes

We used TCGA exome data to identify class-specific
mutations (Fig. 3A and Supplementary Table 4) and
combined 600 available copy number profiles, grouped
by consensus class, to identify class-specific copy number
aberrations (CNAs; Supplementary Table 5). In addition, we
combined all CNA, gene fusion, and gene mutation data
from the 18 cohorts to generate comprehensive profiles of
e available exome data from 388 TCGA MIBC samples to study the
mentary Table 4 and Supplementary Fig. 3). The panel displays the
ns that were significantly enriched in one consensus class are marked by
ancer–associated genes and statistical association with consensus

 Supplementary Table 5) from CIT (n = 87), Iyer (n = 58), Sjödahl (n = 29),
 and PPARG fusion data (n = 404) from TCGA data; CDKN2A and RB1
n = 13, respectively) data; FGFR3 mutation data from MDA (n = 66), CIT
ata from MDA (n = 66), CIT (n = 87), Iyer (n = 39), Sjödahl (n = 28), and

 (n = 39), and Stransky (n = 13). Lower panels: associations between each
re evaluated by Fisher’s exact test. Consensus classes significantly
terisk.
r aberration; LumNS = luminal nonspecified; LumP = luminal papillary;
vasive bladder cancer; NE = neuroendocrine; TCGA = the Cancer Genome

olecular Classification of Muscle-invasive Bladder Cancer. Eur
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genomic alterations for seven key bladder cancer genes
(FGFR3, CDKN2A, PPARG, ERBB2, E2F3, TP53, and RB1) for
each consensus class (Fig. 3B).

LumP tumors were mainly enriched in FGFR3 mutations,
with 33% of FGFR3-mutated LumP tumors in the TCGA
cohort (p-adjusted <0.001) and summing to 40% by adding
FGFR3-targeted sequencing mutation data (n = 255) from
additional cohorts (p-adjusted <0.001). LumP tumors also
harbored more frequent mutations of KDM6A (38%, p-
adjusted = 0.013). Assembling mutations, fusions, and copy
number amplifications, FGFR3 genomic alterations were
enriched in LumP tumors (55%, p < 0.001). CDKN2A multi-
plex ligation-dependent probe amplification (MLPA) from
102 tumors and CNA data for 502 tumors revealed
homozygous/deep deletions of CDKN2A in 33% of LumP
tumors, which was significantly higher than in other classes
(p < 0.001). These deletions were consistent with the
enrichment of LumP tumors within the TCGA pan-cancer
iCluster C7:Mixed (Chr9 del) (p < 0.001), characterized by
chromosome 9 deletions (Supplementary Fig. 2).

The LumNS class was mainly characterized by enrich-
ment of mutations in ELF3 (35%, p-adjusted = 0.026), which
is an early regulator of urothelial differentiation and is
activated by PPARG [29]. PPARG was significantly altered as
well, with 76% of LumNS tumors harboring either ampli-
fications or fusions (p = 0.006).

LumU tumors also harbored frequent PPARG alterations
(89%, p < 0.001) and high-level amplifications of a 6p22.3
region that contains E2F3 and SOX4 (76%, p < 0.001). ERBB2
amplifications were over-represented in LumU tumors
(39%, p < 0.001), but no significant association was found
between ERBB2 mutations and any of the consensus classes.
In contrast with the other luminal classes, LumU tumors
were associated with mutations in TP53 (76%, p-adjusted
<0.001) and in ERCC2, which codes for a core nucleotide-
excision repair component (22%, p-adjusted = 0.039). More
generally, LumU was the most genomically altered class
(Supplementary Fig. 3), displaying the highest number of
CNAs (p < 0.001) and the highest somatic mutation load (p
= 0.009), and including more APOBEC-induced mutations
than the other consensus classes (p = 0.01). These features of
genomic instability and the association with ERBB2
amplifications were consistent with the enrichment of
LumU tumors within the TCGA pan-cancer subtypes C2:
BRCA (HER2 amp) (breast tumors characterized by frequent
ERBB2 amplifications, p < 0.001) and C13:Mixed (Chr8 del)
(enriched in highly aneuploid tumors, p < 0.001, as shown in
Supplementary Fig. 2) [23].

For Ba/Sq tumors, as shown previously [30], the most
frequently mutated genes based on TCGA exome data were
TP53 (61%, p-adjusted = 0.002) and RB1 (25%, p-adjusted =
0.012). Aggregated mutation data, including targeted
sequencing data from other cohorts, revealed that 58%
(134/232, p = 0.009) and 20% (43/224, p = 0.007) of Ba/Sq
tumors contained mutations in TP53 and RB1, respectively;
these mutations co-occurred in 14% (32/224) of Ba/Sq cases.
Ba/Sq tumors were also strongly associated with genomic
deletions of 3p14.2, which occurred in 49% of cases (p
= 0.001).
Please cite this article in press as: Kamoun A, et al. A Consensus M
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Combining all available data on genomic alterations of
TP53 and RB1, we observed strong enrichment of concurrent
TP53 and RB1 inactivation in NE-like tumors. TP53 was
ubiquitously mutated in these tumors (94%, p-adjusted =
0.030), and co-occurred with RB1 alteration by either
mutations or deletions (94%, p-adjusted = 0.029).

3.4. Histological patterns associated with the consensus

molecular classes

To characterize the consensus molecular classes histologi-
cally, we assembled annotations for urothelial cancer
histological variants and specific morphological patterns
(Fig. 4 and Supplementary Fig. 4). As expected, Ba/Sq tumors
included 79% of tumors in which histological review
identified squamous differentiation (126/159, p-adjusted
<0.001). However, the Ba/Sq class extended beyond this
histological subtype, with only 42% (126/303) of Ba/Sq
tumors being associated with squamous differentiation
identified by pathologists. Similarly, NE-like tumors were
strongly associated with neuroendocrine variant histology,
with 72% of histologically reviewed NE-like tumors showing
neuroendocrine differentiation (13/18, p-adjusted <0.001),
which accounts for 81% of all tumors with such differentia-
tion. LumP tumors were enriched with papillary
morphology as compared with other consensus classes
(p-adjusted = 0.002). This pattern was observed in 59% (82/
139) of histologically reviewed LumP tumors, although it
was frequently found in other luminal classes (42% in
LumNS and 31% in LumU). LumNS tumors were enriched in
micropapillary variant histology (36%, nine/25, p-adjusted
= 0.032) and were commonly associated with carcinoma in
situ (80%, four/five, p = 0.005).

A pathological review of stromal infiltration in slide
images corresponding to the TCGA tumor samples con-
firmed that stroma-rich tumors contained a higher propor-
tion of smooth muscle cells (p < 0.001), consistent with the
strong smooth muscle–related mRNA expression character-
izing these tumors.

3.5. Association of the consensus molecular classes with clinical

characteristics, survival outcomes, and therapeutic opportunities

The consensus classes were associated with gender, stage,
and age (Fig. 5A). Ba/Sq tumors were over-represented in
females (p < 0.001) and in higher clinical stages (p < 0.001),
consistent with published results [4,9–11]. The LumP and
LumU consensus classes were enriched in T2 versus T3–4
tumors (p = 0.009 and p < 0.001, respectively) as compared
with other classes. Younger patients (<60 yr) were over-
represented among LumP tumors (p = 0.001), whereas the
LumNS consensus class was enriched with older patients
(>80 yr; p = 0.03).

Overall survival was strongly associated with the
consensus classes (Fig. 5B, p < 0.001). Class survival was
evaluated in a multivariable Cox model considering tumor,
node, and metastasis, and patient age as covariates (p
= 0.002 and p = 0.05, respectively; Supplementary Table 6).
The LumP class was used as the reference for class-based
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https://doi.org/10.1016/j.eururo.2019.09.006


Fig. 4 – Histopathological associations with consensus classes. (A) Histological variant over-representation within each consensus class. One-sided
Fisher exact tests were performed for each class and histological pattern. Pathological review of histological variants was available for several cohorts:
squamous differentiation was evaluated in CIT (n = 75), MDA (n = 46), Sjödahl2012 (n = 23), Sjödahl2017 (n = 239), and TCGA (n = 406) cohorts;
neuroendocrine variants were reviewed in CIT (n = 75), MDA (n = 46), Sjödahl2017 (n = 243), and TCGA (n = 406) cohorts; micropapillary variants were
reviewed in CIT (n = 75), MDA (n = 46), and TCGA cohorts (n = 118 FFPE tumor slides from TCGA were reviewed by Y.A. and J.F. for this study). Results
are displayed on the heatmap as –log10(adj Fisher’s p). Detailed sample counts within each class are given in Supplementary Fig. 4. (B) Occurrence of
papillary morphology in tumors from the TCGA cohort (n = 401) and the CIT cohort (n = 47). (C) Proportion of samples with associated CIS within each
consensus class in tumors from the CIT cohort (n = 84) and the Dyrskjøt cohort (n = 8). (D) Smooth muscle infiltration from images for 173 tumor
slides from the TCGA cohort. Each sample was assigned a semiquantitative score ranging from 0 to 3 (0 = absent, 1 = low, 2 = moderate, and 3 = high)
to quantify the presence of large smooth muscle bundles. The bar plot shows means and standard errors for each class.
Ba/Sq = basal/squamous; CIS = carcinoma in situ; CIT = Cartes d’Identité des Tumeurs; FFPE = formalin-fixed paraffin-embedded; LumNS = luminal
nonspecified; LumP = luminal papillary; LumU = luminal unstable; MDA = MD Anderson Cancer Center; NE = neuroendocrine; TCGA = the Cancer Genome
Atlas.
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survival. Patients with stroma-rich tumors had similar
outcomes to patients with LumP tumors (HRStroma-rich/LumP

= 0.93, CI95 = [0.6, 1.44]), and their survival was independent
of the differentiation status of the tumor sample (Supple-
mentary Fig. 5). Likewise, patients with LumNS tumors had
similar prognosis to patients with LumP tumors in the
multivariable model that considers age (HRLumNS/LumP =
0.93; CI = [0.54, 1.62]).

The LumU class was associated with poorer patient
prognosis (HRLumU/LumP = 1.35, CI = [0.93, 2.39]), although in
this setting the difference was modest and not significant.

Ba/Sq tumors were associated with a poor prognosis
(HRBaSq/LumP = 1.73, CI = [1.3, 2.58], p = 0.002), consistent
with previous studies [11]. Finally, NE-like tumors were
associated with the worst prognosis (HRNE-like/LumP = 2.18,
CI = [1.09, 5.08], p = 0.046).

We characterized the consensus classes using several
clinically relevant mRNA signatures (Fig. 5C and Supple-
mentary Table 7). The FGFR3 signature was strongly and
specifically activated in LumP tumors (p < 0.001), suggest-
ing that FGFR3-targeted therapies warrant investigation in
patients with tumors of this consensus class. Ba/Sq tumors
Please cite this article in press as: Kamoun A, et al. A Consensus M
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expressed high levels of EGFR receptor and its ligands (p
< 0.001), which may be associated with sensitivity to EGFR-
targeted therapies, as suggested by previously reported in
vitro and in vivo experiments [11]. Ba/Sq tumors also
strongly expressed immune checkpoint markers (p < 0.001)
and antigen-presenting machinery genes (p < 0.001), sug-
gesting that such tumors might be more responsive to
immunotherapies. Studies integrating mRNA signatures
with data on response to anti-PD1/PD-L1 therapies [19,31]
have reported associations of anti-PD1/PD-L1 response with
high levels of CD8 + T cells, high interferon gamma signals,
and low activity of the transforming growth factor-beta
pathway. However, considering this combination of factors,
no consensus class had an expression profile that clearly
suggested either response or resistance to anti-PD1/PD-L1
therapies. In contrast, NE-like and LumU tumors both had
profiles associated with a potential response to radiothera-
py [32,33], showing elevated cell cycle activity (pNE-like
< 0.001 and pLumU< 0.001) and low hypoxia signals (pNE-
like = 0.01 and pLumU< 0.001).

Finally, we performed a consensus class–based retro-
spective analysis of outcomes of patients receiving
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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Fig. 5 – Clinical characteristics and prognostic associations. (A) Association of consensus classes with gender (n = 1554), clinical stage (n = 1641), and
age category (n = 1383). (B) Five-year overall survival stratified by consensus class (see also Supplementary Fig. 5). Kaplan-Meier curves were generated
from 872 patients with available follow-up data. Patients who had received neoadjuvant chemotherapy were excluded from the survival analysis.
Detailed statistics of the multivariable survival analyses is given in Supplementary Table 6. (C) We selected a set of clinically relevant gene signatures
(see Supplementary Table 7) and performed a gene set analysis (see the Supplementary material, Methods) in each dataset to test the significance of
their differential expression in each consensus class relative to the others. We used one-sided t tests to assess the differential expression of single
genes (PD-1 and PD-L1). The heatmaps show Stouffer combined p values over all datasets. Plus/minus annotation of gene sets indicates association of
high gene expression levels with response/resistance to the corresponding therapy.
Ba/Sq = basal/squamous; EGFR = estimated glomerular filtration rate; FGFR = fibroblast growth factor receptor; IFN = interferon; LumNS = luminal
nonspecified; LumP = luminal papillary; LumU = luminal unstable; NE = neuroendocrine; TGF = transforming growth factor.
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neoadjuvant chemotherapy (NAC) [12,18] and patients
treated with the anti-PD-L1 antibody atezolizumab
(IMvigor210) [19] (Supplementary Fig. 6). While outcome
was associated with the consensus class for NAC-free
patients (Fig. 5B), for NAC-treated patients, we observed
no significant association of outcome with the consensus
class. Despite this, comparison of survival curves with or
without NAC treatment (Supplementary Fig. 6A and Fig.
Please cite this article in press as: Kamoun A, et al. A Consensus M
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5B) suggested that patients with Ba/Sq or LumNS tumors
may benefit from NAC, while patients with a stroma-rich
tumor may not. We observed an enrichment in atezo-
lizumab responders among patients with LumNS (p
= 0.05), LumU (p = 0.0044), and NE-like (p = 0.012)
tumors. In particular, NE-like tumors may respond to
immune checkpoint inhibitors, as suggested by recent
results [34].
olecular Classification of Muscle-invasive Bladder Cancer. Eur
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4. Discussion

While precision genomic medicine promises to transform
clinical practice, the diversity of published MIBC classifica-
tions has delayed transferring of subtypes into both clinical
trials and standard management of bladder cancer patients.
In the present study, we generated a stable consensus
classification system from existing well-documented mo-
lecular subtyping systems, following a procedure similar to
that used to identify consensus subtypes in colorectal
cancer [22]. The four consensus molecular subtypes
identified in that work have helped frame the development
of colorectal cancer precision medicine and are now being
evaluated in clinical trials [35,36].

Here, we analyzed the relationships among six published
classification systems, based on 1750 MIBC transcriptomic
profiles. We identified six consensus MIBC molecular
classes that reconcile all six classification schemes: LumP,
LumU, stroma-rich, LumNS, Ba/Sq, and NE-like. Each
consensus class has distinct differentiation patterns,
oncogenic mechanisms, tumor microenvironments, and
histological and clinical associations, which are summa-
rized in Fig. 6. To facilitate translating the consensus classes
to research and clinical settings, we provide the community
with an R-based single-sample classifier that assigns a
consensus class label to a tumor sample’s transcriptome.
Fig. 6 – Summary of the main characteristics of the consensus classes. From to
consensus classes in the 1750 tumor samples; consensus class names; schemat
(immune cells, fibroblasts, and smooth muscle cells); differentiation-based col
luminal-to-basal gradient and neuroendocrine differentiation; and a table disp
mutations, stromal infiltrate, immune infiltrate, histology, clinical characterist
Ba/Sq = basal/squamous; EGFR = estimated glomerular filtration rate; LumNS = lu
MIBC = muscle-invasive bladder cancer; NE = neuroendocrine; NK = natural kille
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Some bladder tumors show histological and molecular
intratumor heterogeneity [37]. Our consensus subtyping
system addresses intertumor heterogeneity and focuses on
defining the main molecular subtypes of MIBC. Our
transcriptomic classifier will categorize tumors according
to the dominant class within the tumor sample analyzed.
We recognize that heterogeneous tumor samples may
contain multiple subtypes and that some tumor classes are
more clearly distinguishable from other tumor classes (eg,
Ba/Sq and NE-like tumors). We address how these
considerations are likely to interfere with our single-sample
classifier by having the classifier report not simply a class
label, but also correlation values to the centroids of the six
consensus classes, and a separation score that reflects how
well a sample is represented by its consensus class. Further
studies will be required to assess the impact of intratumor
heterogeneity on prognosis and response to treatment.

The consensus classification suggests possible therapeu-
tic implications. Both the high rate of FGFR3 mutations and
translocations in LumP tumors, and the FGFR3 activation
signatures [4,9] associated with these tumors suggest that
they may respond to fibroblast growth factor receptor
(FGFR) inhibitors, irrespective of the mutation or translo-
cation status of FGFR3. Novel FGFR inhibitors have been
reported to clinically benefit the �20% of MIBC patients
with tumors harboring mutations or translocations in the
p to bottom, the following characteristics are presented: proportion of
ic graphical representation of tumor cells and their microenvironments
or scale showing features associated with consensus classes, including a
laying the dominant characteristics such as oncogenic mechanisms,
ics, and median overall survival.
minal nonspecified; LumP = luminal papillary; LumU = luminal unstable;
r.
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tyrosine kinase receptor FGFR3 and the �40% of MIBC
patients with tumors overexpressing FGFR3 [38–40].

There is increasing interest in targeting the tumor
microenvironment, including the use of immunotherapy
strategies. In the USA and most of Europe, PD1 and PD-L1
immune checkpoint inhibition is becoming part of the
standard of care for patients with locally advanced or
metastatic urothelial cancer who relapse after cisplatin-
based chemotherapy or are considered cisplatin ineligible,
with a 20% objective response rate. A phase 3 clinical trial
has demonstrated the efficacy of targeting tumor vascula-
ture in MIBC using an anti-VEGFR2 inhibitor [41]. The
consensus classes are associated with different stromal
components, identified by transcriptomic signatures, and
likely different response to immunotherapy, as revealed by
our analysis of the IMvigor210 data, suggesting that they
should be considered for further clinical studies involving
immunotherapy or antiangiogenic therapy.

Similarities between MIBC consensus classes and other
cancer molecular subtypes reported in the PanCancer Atlas
work may also be considered for future basket trials. We
showed that such similarities are observed, for example,
between Ba/Sq MIBC tumors and squamous cell carcinomas
arising in the head and neck, lung, and cervix, which were
placed together in the C27 TCGA pan-cancer cluster. LumU
tumors and other ERBB2-amplified tumors in breast and
gastric cancers were also grouped together in the C2 pan-
cancer cluster. More generally, bladder cancer and breast
cancer luminal tumors share molecular similarities
[10,24]. Indeed, in both cancers, the luminal subtypes rely
on GATA3 and FOXA1, two transcription factors that are
necessary for luminal differentiation, and on a nuclear
receptor (the estrogen receptor (ESR1) in breast cancer or
PPARG in bladder cancer) [25]. Intriguingly, in both cancers,
there is evidence that the nuclear receptor is involved in
differentiation, while also having protumorigenic effects.
Such comparisons across tumor types may help transfer
treatment information from tumors bearing similar char-
acteristics to bladder cancer and vice versa.

The limitations of our study include cohorts that varied
in size, composition, and gene expression technology;
retrospective collection of clinical data; and incomplete
information regarding patient treatment. Validating our
findings, and refining subtype classification as an indepen-
dent predictor of response or prognosticator of outcome
will require prospective studies in which the proposed
classes are identified for patients who receive standardized
treatments.

5. Conclusions

We emphasize that we report biological rather than clinical
classes. We offer a single-sample mRNA classifier (available
in an R package and web application) as a research tool for
the retrospective and prospective work required to
establish how such classes can best be used clinically.
The consensus presented here provides a common
foundation for the molecular classification of MIBC. Future
Please cite this article in press as: Kamoun A, et al. A Consensus M
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substratifications may allow defining a system that is more
predictive of a response to treatments; in such work, the
clinical/strategic issue will be to decide the subtype
granularity or resolution [42] that is appropriate for
addressing a specific problem. We expect that this
consensus classification will help the development of
MIBC precision medicine by providing a robust framework
to connect clinical findings to molecular contexts and to
identify clinically relevant biomarkers for patient manage-
ment.
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