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Abstract: The aim of this work is the construction, calibration, and comparative analysis of mathematical

models of the evolution of the human immunode�ciency virus (HIV) in the course of infection when the

models are based on deterministic principles of the quasispecies theory (Eigen–Schuster) and on stochastic

approaches of genetic algorithms (Holland). The models take into account the replication of viral genomes

and selection of descendants according to their �tness, point mutations, multi-infection of target cells and

recombination of genomes at the stage of formation of proviral DNA. The processes of diversi�cation of the

virus population under the action of the antiviral drug azidothymidine (AZT) that blocks reverse transcription

of the virus are simulated. A four-letter alphabet is used in the stochastic model for description of nucleotide

sequences. The parameters of the model are estimated using original data on the degree of adaptation of the

HIV mutants that are partly or completely resistant to this drug. The in�uence of parameters of infection on

the characteristics of viral mutants population diversity is studied.
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The central problem of mathematical modelling in immunology is the description of the immune system

and outcome predictions of interactions between pathogens and the human body. The variety of cources

and outcomes of infection depends on the dynamics of interaction of infecting pathogens and the immune

system [29]. The fundamental basis of mathematical modelling in immunologywas laid by G. I. Marchuk [19].

A signi�cant experience in construction and application of mathematical models of the dynamics of immune

system reactions in response to the reproduction of viruses or bacteria is accumulated nowadays [19, 21].

An infection, caused by the human immunode�ciency virus of �rst type 1 (HIV) is the object of intensive

interdisciplinary research based on the methods of mathematical modelling aimed to study the mechanisms

of pathogenesis and opportunities of a complete cure [6, 9].

One of the problems related to understanding the dynamics of theHIV infection is associatedwith a rapid

variability of viruses and the selection of better adapted mutants in the context of selective pressure from the

immune system and used antiviral drugs. A signi�cant genetic diversi�cation of the virus population appears

in the course of infection, which leads to the need to use the concept of ‘quasispecies’ [4], i.e., an ensemble

of viral RNA sequences di�ering from each other in several bases in populations of closely related, but not
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identical genomes of HIV. The mathematical formalization of the theory of quasispecies was carried out by

Eigen and Schuster [12–14].

Since the variability of HIV is a key factor in the pathogenesis of the disease, the construction of bio-

logically meaningful models of the HIV infection necessarily requires the development of e�cient methods

for description of the heterogeneity and prediction of viral populations properties, namely, the antiviral re-

sistance and escape from immune response. By now there are two approaches to modelling HIV variability,

these are the deterministic approach based on application of systems of ordinary di�erential equations (ODE)

[21] or partial di�erential equations (PDEs) [25] and the stochastic one based on genetic algorithms [5, 27, 28].

Each of them is characterized by its range of applicability and implementation details. Within the framework

of the theory of quasispecies using the ODE model, one can e�ciently study the e�ect of mutations on the

genetic evolution of virus populations [18, 21]. To study the process of viral replication during HIV infection,

which has a number of features including the multi-infection of cells and recombination of genomes, the use

of approaches based on genetic algorithms appears to be quite appropriate.

Previously, we have constructed a stochastic model [5] of HIV variability on the base of representation

of viral genomes as vectors (sequences or chains) of nucleotides of length L = 100 encoded using a binary

alphabet. The aim of this paper is the construction, calibration, and comparative analysis of the deterministic

and stochastic models of HIV evolution during the infection taking into account point mutations, recombi-

nation, replication of viral genomes, and selection of descendants according to their �tness. We simulate

processes of diversi�cation of the virus population under the action of the antiviral azidothymidine (AZT)

drug which blocks the reverse transcription of viruses. To do that, we use original data for �tness values of

the HIV mutants partly or completely resistant to the drug. It should be noted that we propose such a level of

detail for description of the HIV mutants diversi�cation based on real data that is absent in current attempts

to modelling the HIV evolution [1, 6, 21, 27, 28].

Section 2 describes the speci�c aspects ofHIV replication. In Section 3,we formulate theODEmodel of dy-

namics of the HIV mutants resistant to antiviral drugs taking into account mutation, recombination, and the

possibility of double infection of cells. Section 4 presents the construction of stochastic model based on ge-

netic algorithms and taking into account mutations, recombinations under the conditions of multi-infection

of target cells. In conclusion we discuss two approaches to modelling the HIV evolution and their further

development.

1 HIV replication characteristics

HIV belongs to the family of retroviruses [9]. The genome of the virus consists of two single-stranded RNA

molecules each of which contains about 104 nucleotides specifying the 4-letter alphabet A, C, G, U. The evo-

lutionary process is caused by the action of random factors at certain stages of viral replication, �rst of all,

at reverse transcription of viral RNA into proviral DNA which is integrated into the genome of infected target

cells (macrophages, CD4 T lymphocytes). This process can be blocked using inhibitors of reverse transcrip-

tion. These also include the drug AZT whose action is considered in this paper. Key characteristics of the

process of the HIV replication were systematized in [6], in this case the rate of virus production by infected

cells in the body is about 109 particles per day, with ∼ 0.25 point mutations per genome in a single replica-

tion cycle. In the case of multi-infection, i.e., when the number of proviral DNA integrated into the cellular

genome is greater than one, an intense recombination process takes place with the rate of 3 − 30 times per

genome in a replication cycle.

The high genetic variability of HIV and the selection of the most adapted mutants determine the abil-

ity of a population to escape from the immune response and develop a resistance to the antiviral therapy.

The theoretical basis for the study of mutation-selection processes may be formed by the concept of qua-

sispecies proposed by Eigen and Schuster [12–14] for the description of genome evolution de�ned by repli-

cating polynucleotide sequences. The model of quasispecies dynamics considers the set (population) {Sk}

of sequences S1, . . . , Sn represented as vectors Sk = {Sk1, . . . , SkN}, k = 1, . . . , n, with the components
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taking a speci�ed number ν of distinct values determined by the coding alphabet. For example, we may con-

sider the alphabet with two elements
(

ν = 2, Skj ∈ {−1, 1} , j = 1, . . . , N
)

, or the alphabet with four letters
(

ν = 4, Skj ∈ {A,C,G,T}
)

. It is supposed that the length N of the sequence and the size n of the population are

large, i.e., n, N ≫ 1. A variation of the population is realized as the result of interaction of the replication,

mutation, and selection on the basis of �tness values. The character of evolution essentially depends on the

size n of the population. If n is large, then the evolution dynamics of the population can be described by an

ODE system. Canonical equations of the theory of quasispecies have the following form in the mathematical

virology [21]:

dv

dt
=Wv − d (v)v, W =













a1Q11 a2Q21 · · · anQn1

a1Q12 a2Q22 · · · anQn2

...
...

. . .
...

a1Q1n a2Q2n · · · anQnn













, d (v) =

n
∑

i=1

aivi

n
∑

i=1

vi

. (1.1)

The components of the vector v represent the number of genomes composing the population v =

{v1, v1, . . . , vn}; ai is the rate of replication of the ith quasispecies, i = 1, . . . , n; Q = (Qij) is the n × n

mutation matrix, i.e., the matrix of probabilities that a mutant of ith type becomes a mutant of jth type as

the result of the mutation process. The second term in the right-hand side of equations (1.1) is introduced to

limit the total size of the population. The solution to system 1.1 satis�es the following assertions: (1) the total

number of quasispecies is constant,
∑n

i=1 vi = const; (2) the equilibrium distribution is determined by the

eigenvector corresponding to the maximal eigenvalue of the matrixW.

The classic model of quasispecies does not take into account the action of recombination processes oc-

curring during HIV infection. Below we propose one of possible variants of generalizations of model (1.1)

to describe the in�uence of genome recombination in the case when chromosomes of an infected cell con-

tain two proviral genomes. Developing our previous approach [5] and considering the fragment of HIV DNA

determining the AZT-resistance, we use a four-letter alphabet corresponding to the set of nucleotide, i.e., A

is for deoxyadenosine, G is for deoxyguanosine, T is for thymidine, C is for deoxycytidine. Methionine and

threonine are at the 41st and 215th positions of the aminoacid sequence of the wild-type virus. Therefore,

the initial virus population positions 121–123 contain a symbol combination ATG, and the positions 643–645

contain the combination of symbols ACC.We consider the following subpopulation of mutants completely or

partly resistant to AZT; vi (t) is the size of the ith quasispecies in the virus population in the body, where i = 1

corresponds to thewild type (WT,when the positions 121–123 of the nucleotide chain contain the combination

ATG, and the positions 643–645 contain the combination ACC), i = 2 corresponds to the mutant M41L (the

same positions contain TTG and ACC, respectively), i = 3 is for T215N (ATG and AAC), i = 4 is for T215S (ATG

and TCC), i = 5 is for T215Y (ATG and TAC), i = 6 is for M41L+T215N (TTG and AAC), i = 7 is for M41L+T215S

(TTG and TCC), i = 8 is for M41L+T215Y (TTG and TAC).

The rate of mutation was estimated with the use of experimental data for the rate of mutations of speci�c

nucleotides [10]. According to these data, the rate of mutation A → C is 0.543; A → G is 2.277; A → T is 0.319;

C → A is 1.858; C → G is 0.228; C → T is 4.601; G → A is 7.361; G → C is 0.262; G → T is 0.655; T → A is 0.810;

T → C is 2.809; T → G is 0.580. The selection of mutants in the new population after the replication cycle

depends on the value of the �tness function calculated experimentally [20] for various doses of AZT, {0, 0.03,

0.3, 2, 5, 10 µM}, presented in Table 1.

2 Deterministic model of HIV quasispecies dynamics

Wegeneralize the quasispeciesmodel by enabling the recombination process in the case of single and double

infection of target cells, which corresponds to clinical data [26]. According to this approach, we implemented

the following simple one-point recombination operator: the point of transition from one chain to another is

chosen randomly for two chains. Both chains are divided into two parts and exchange blocks of nucleotides.
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Table 1. Fitness values for AZT-resistant mutants.

Concentration Wild Mutation Mutation Mutation Mutation Mutation Mutation Mutation

of AZT µM type WT M41L T215N T215S T215Y M41L+T215N M41L+T215S M41L+T215Y

0 1 0.604 0.203 0.253 0.704 0.291 0.493 0.782

0.03 0.560 0.509 0.0958 0.100 0.606 0.124 0.393 0.617

0.3 0.162 0.166 0.012 0.016 0.293 0.038 0.116 0.385

2 0.043 0.024 0.0009 0.0038 0.116 0.020 0.009 0.187

5 0.0052 0.012 0 0 0.027 0.0011 0.0029 0.098

10 0 0.0011 0 0 0.011 0 0 0.020

Table 2. Transitions between mutants as the result of point mutations.

WT M41L T215N T215S T215Y M41L+T215N M41L+T215S M41L+T215Y

WT A → T C → A A → T 2 2 2 3

M41L T → A 0 2 2 3 C → A A → T 2

T215N A → C 2 0 2 A → T A → T 3 2

T215S T → A 2 2 0 C → A 3 A → T 2

T215Y 2 3 T → A A → T 0 2 2 A → T

M41L+T215N 2 A → C T → A 3 2 0 2 A → T

M41L+T215S 2 T → A 3 T → A 2 2 0 C → A

M41L+T215Y 3 2 2 2 T → A T → A A → C 0

Figure 1. Single recombination scheme implemented in the ODE model of quasispecies dynamics.

Thus, the process of reverse transcription in the model involves a crosswise transfer of nucleotides from one

chain of RNA to another (see Fig. 1).

We analyze the parameters characterizing the transitions between the considered variant of mutants.

The mutations relevant for consideration in the model and leading to a change in sizes of the corresponding

subpopulation of mutants completely or partly resistant to AZT are presented in Table 2. The numbers denote

situations when the number of necessary mutations di�ers from 1.

Following [5], we estimate the rates of transition Qij of mutants of one type to another in the following

way. If we assume that mutations of nucleotides are equiprobable, then the probability of replacement of one

base at a particular position to another is equal to p = 2.5 · 10−5. Since we use the four-letter code (A, C,

G, T), then each base can be replaced by one of three others. The probability that none of coding bases is

changed at any position (41st or 215th) is equal to Qii = (1 − p)
6. In this case the probability of mutation in

one of the six considered bases is equal to Qij = p (1 − p)
5. For the chosen value of p we have Qii = 0.9999,

Qij ≈ 2.5·10−5, i 6= j). The probability of transition from one type ofmutant to another is assumed to be zero if

this requires not less than twomutations. As was shown in [9], themutations between bases presented above

are not equiprobable. The probabilities of transition between nucleotide bases quanti�ed experimentally and

calculated on the base of roulette principle (see Fig. 4) have the following characteristics: the transition A→T

occurs with the probability p1 = 0.1; A→C with p2 = 0.17; T→A with p3 = 0.19; C→A with p4 = 0.28.

Taking into account these estimates, the coe�cients Qij characterizing in the model the rates of transition

fromone type ofmutant to another are additionally scaled, i.e., multiplied by the corresponding probabilities

pk, k = 1, . . . , 4, of speci�c transition of one base to another.

In the case of double infection of target cells one has to take into account recombination caused tran-

sitions between the considered types of mutants. Variants of formation of various pairs of virus genomes in
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Table 3. Transitions between mutants due to recombination in double infection.

type 1 2 3 4 5 6 7 8

1 1 1,2 1,3 1,4 1,5; 3,4 1,6; 3,2 1,7; 2,4 1,8; 2,5; 7,3

2 1,2 2 2,3; 6,1 2,4; 7,1 2,5; 8,1; 6,4 2,6 2,7 2,8; 6,7

3 1,3 2,3; 6,1 3 3,4; 1,5 3,5 3,6 3,7; 4,6; 1,8 3,8; 5,6

4 1,4 2,4; 7,1 3,4; 1,5 4 4,5 4,6; 3,7; 5,2 4,7 4,8; 5,7

5 1,5; 3,4 2,5; 8,1; 6,4 3,5 4,5 5 5,6; 3,8 5,7; 4,8 5,8

6 1,6; 3,2 2,6 3,6 4,6; 3,7; 5,2 5,6; 3,8 6 6,7; 2,8 6,8

7 1,7; 2,4 2,7 3,7; 4,6; 1,8 4,7 5,7; 4,8 6,7; 2,8 7 7,8

8 1,8; 2,5; 7,3 2.8; 6,7 3,8; 5,6 4,8; 5,7 5,8 6,8 7,8 8

double infection are presented in Table 3, where the ordinal number of the mutant is given instead of its

description.

In order to describe the recombination probability for a pair of chains (i, j) for the chain length of 1800

nucleotides, we introduce the notation zij
kl
, where the superscript indicates which chains participate in re-

combination, the subscript indicates the chains generated in this process. These probabilities can be esti-

mated in the following way. We denote the recombination probability by z and assume that the breaks of

chain are equiprobable at any point. To calculate the recombination probability for double infection, we have

to multiply z (in the model considered here the recombination probability for a particular pair of chains is

z = 10−8) by the probability of double infection q (in the model we have q = 0.2). In this case the proba-

bility of breaking at a given position equals zql−1, where l + 1 is the length of the chain. Below we assume

that the length of the chain is l + 1 = 1800. The probability that the crossover occurs at one of the �rst 120

positions is 120zql−1, the probability of breaking at one of l − 645 last positions is (l − 645)zql−1 (for the

chain length of 1800 nucleotides we have 1154zql−1), the probability of breaking between the 123rd and

643rd positions is 519zql−1. If the length of a chain di�ers from 1800, only the probability of breaking af-

ter the 645th position is changed. We note that the recombination of chains of one type results in formation

of two chains of the same type with the probability z. If we take into account the feasibility of double in-

fection by virions of identical type, then the recombination may produce di�erent types with the following

probabilities: for the pair (1,1) this is z1111 = z; for (1,2) and (2,1) – z1212 = zq; for (1,3) and (3,1) – z1313 = zq;

for (1,4) and (4,1) – z1414 = zq; for (1,5) and (5,1) – z1515 = 1789zql−1 and z1534 = zql−1; for (1,6) and (6,1) –

z1616 = 1276zql−1 and z1623 = 523zql−1; for (1,7) and (7,1) – z1717 = 1277zql−1 and z1724 = 522zql−1; for (1,8)

and (8,1) – z1818 = 1276zql−1, z1825 = 522zql−1, and z1837 = zql−1; for (2,2) – z2222 = z; for (2,3) and (3,2) –

z2323 = 1279zql−1 and z2361 = 521zql−1; for (2,4) and (4,2) – z2424 = 1279zql−1 and z2471 = 521zql−1; for (2,5)

and (5,2) – z2525 = 1276zql−1, z2518 = 522zql−1, and z2546 = zql−1; for (2,6) and (6,2) – z2626 = zq; for (2,7)

and (7,2) – z2727 = zq; for (2,8) and (8,2) – z2828 = 1279zql−1and z2867 = 521zql−1; for (3,3) – z3333 = z; for

(3,4) and (4,3) – z3434 = 1789zql−1 and z3415 = zql−1; for (3,5) and (5,3) – z3535 = zq; for (3,6) and (6,3) –

z3636 = zq; for (3,7) and (7,3) – z3737 = 1276zql−1, z3746 = 522zql−1and z3718 = zql−1; for (3,8) and (8,3) –

z3838 = 1277zql−1 and z3856 = 522zql−1; for (4,4) – z4444 = z; for (4,5) and (5,4) – z4545 = zq; for (4,6) and (6,4) –

z4646 = 1276zql−1, z4637 = 522zql−1and z4625 = zql−1; for (4,7) and (7,4) – z4747 = zq; for (4,8) and (8,4) – z4848 =

1276zql−1 and z4857 = 523zql−1; for (5,5) – z5555 = z; for (5,6) and (6,5) – z5656 = 1277zql−1and z5638 = 522zql−1;

for (5,7) and (7,5) – z5757 = 1276zql−1 and z5748 = 523zql−1; for (5,8) and (8,5) – z5858 = zq; for (6,6) – z6666 = z; for

(6,7) and (7,6) – z6767 = 1789zql−1 and z6728 = zql−1; for (6,8) and (8,6) – z6868 = zq; for (7,7) – z7777 = z; for (7,8)

and (8,7) – z7878 = zq; for (8,8) – z8888 = z.

Finally, we formulate a system of equations of the model of population dynamics of mutants resistant to

AZT on the basis of the quasispeciesmodel where alongwith replication, loss, pointmutations, and selection

of mutants we also take into account the recombination of genomes. It is assumed that the cells infected

with di�erent mutants produce each of them in equal amounts. For simplicity of parameterization of the

in�uence of recombination on the production-elimination ofmutants, we assume that the corresponding rate

linearly depends on their quantity. The generalized version of the systemdescribing the population dynamics
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of quasispecies takes the following form:

v̇1 = a1Q11v1 + a2p1Q21v2 + a3p4Q31v3 + a4p1Q41v4 − v1d (v) + R1 (v)

v̇2 = a1p3Q12v1 + a2Q22v2 + a6p4Q62v6 + a7p1Q72v7 − v2d (v) + R2 (v)

v̇3 = a1p2Q13v1 + a3Q33v3 + a5p1Q53v5 + a6p1Q63v6 − v3d (v) + R3 (v)

v̇4 = a1p3Q14v1 + a4Q44v4 + a5p4Q54v5 + a7p1Q74v7 − v4d (v) + R4 (v)

v̇5 = a3p3Q35v3 + a4p2Q45v4 + a5Q55v5 + a8p1Q85v8 − v5d (v) + R5 (v)

v̇6 = a2p2Q26v2 + a3p3Q36v3 + a6Q66v6 + a8p1Q86v8 − v6d (v) + R6 (v)

v̇7 = a2p3Q27v2 + a4p3Q47v4 + a7Q77v7 + a8p4Q87v8 − v7d (v) + R7 (v)

v̇8 = a5p3Q58v5 + a6p3Q68v6 + a7p2Q78v7 + a8Q88v8 − v8d (v) + R8 (v) .

(2.1)

In system (2.1) we have d(v) =
∑8

i=1 aivi
/
∑8

i=1 vi, the values of the coe�cients ai are taken from experi-

mental data on the �tness of mutants from Table 1, the functions Ri (v), i = 1, . . . , 8, have the form

R1 (v) = a1z
11
11v1 + a2z

12
12v2 + a3z

13
13v3 + a4z

14
14v4 + a5z

15
15v5 + a6z

16
16v6 + a7z

17
17v7 + a8z

18
18v8

+
1

2
z3415 (a3v3 + a4v4) +

1

2
z2518 (a2v2 + a5v5) +

1

2
z2417 (a2v2 + a4v4) +

1

2
z3718 (a3v3 + a7v7)

+
1

2
z2318 (a2v2 + a3v3) − a1v1

(

z1534 + z
16
23 + z

17
24 + z

18
25 + z

18
37

)

R2 (v) = a1z
12
12v1 + a2z

22
22v2 + a3z

23
23v3 + a4z

24
24v4 + a5z

25
25v5 + a6z

26
26v6 + a7z

27
27v7 + a8z

28
28v8

+
1

2
z1623 (a1v1 + a6v6) +

1

2
z1724 (a1v1 + a7v7) +

1

2
z1825 (a1v1 + a8v8) +

1

2
z4625 (a4v4 + a6v6)

+
1

2
z6728 (a6v6 + a7v7) − a2v2

(

z2316 + z
24
17 + z

25
18 + z

25
46 + z

28
67

)

R3 (v) = a1z
13
13v1 + a2z

23
23v2 + a3z

33
33v3 + a4z

34
34v4 + a5z

35
35v5 + a6z

36
36v6 + +a7z

37
37v7 + a8z

38
38v8

+
1

2
z1623 (a1v1 + a6v6) +

1

2
z1534 (a1v1 + a5v5) +

1

2
z4637 (a4v4 + a6v6) +

1

2
z1837 (a1v1 + a8v8)

+
1

2
z5638 (a5v5 + a6v6) − a3v3

(

z2316 + z
34
15 + z

37
46 + z

37
18 + z

38
56

)

R4 (v) = a1z
14
14v1 + a2z

24
24v2 + a3z

34
34v3 + a4z

44
44v4 + a5z

45
45v5 + a6z

46
46v6 + a7z

47
47v7 + a8z

48
48v8

+
1

2
z1724 (a1v1 + a7v7) +

1

2
z1534 (a1v1 + a5v5) +

1

2
z2546 (a2v2 + a5v5) +

1

2
z3746 (a3v3 + a7v7)

+
1

2
z5748 (a5v5 + a7v7) − a4v4

(

z2417 + z
34
15 + z

46
37 + z

46
25 + z

48
57

)

R5 (v) = a1z
15
15v1 + a2z

25
25v2 + a3z

35
35v3 + a4z

45
45v4 + a5z

55
55v5 + a6z

56
56v6 + a7z

57
57v7 + a8z

58
58v8

+
1

2
z3415 (a3v3 + a4v4) +

1

2
z1825 (a1v1 + a8v8) +

1

2
z4625 (a4v4 + a6v6) +

1

2
z4857 (a4v4 + a8v8)

+
1

2
z3856 (a3v3 + a8v8) − a5v5

(

z1534 + z
25
18 + z

25
46 + z

56
38 + z

57
48

)

R6 (v) = a1z
16
16v1 + a2z

26
26v2 + a3z

36
36v3 + a4z

46
46v4 + a5z

56
56v5 + a6z

66
66v6 + a7z

67
67v7 + a8z

68
68v8

+
1

2
z2316 (a2v2 + a3v3) +

1

2
z2546 (a2v2 + a5v5) +

1

2
z3746 (a3v3 + a7v7) +

1

2
z3856 (a3v3 + a8v8)

+
1

2
z2867 (a2v2 + a8v8) − a6v6

(

z1623 + z
46
37 + z

46
52 + z

56
38 + z

67
28

)

R7 (v) = a1z
17
17v1 + a2z

27
27v2 + a3z

37
37v3 + a4z

47
47v4 + a5z

57
57v5 + a6z

67
67v6 + a7z

77
77v7 + a8z

78
78v8

+
1

2
z1837 (a1v1 + a8v8) +

1

2
z2417 (a2v2 + a4v4) +

1

2
z4637 (a4v4 + a6v6) +

1

2
z4857 (a4v4 + a8v8)

+
1

2
z2867 (a2v2 + a8v8) − a7v7

(

z1724 + z
37
46 + z

37
18 + z

57
48 + z

67
28

)
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R8 (v) = a1z
18
18v1 + a2z

28
28v2 + a3z

38
38v3 + a4z

48
48v4 + a5z

58
58v5 + a6z

68
68v6 + a7z

78
78v7 + a8z

88
88v8

+
1

2
z3718 (a3v3 + a7v7) +

1

2
z2518 (a2v2 + a5v5) +

1

2
z6728 (a6v6 + a7v7) +

1

2
z5638 (a5v5 + a6v6)

+
1

2
z5748 (a5v5 + a7v7) − a8v8

(

z1825 + z
18
37 + z

28
67 + z

38
56 + z

48
57

)

.

System (2.1) was solved numerically with the use of ode23s algorithm of MATLAB package. Figure 2 presents

the solution to the system for the case when the total probability of recombination in reverse transcription is

0.5, the probability of double infection is∼ 0.2, and the total size of the population of virions is 104 particles.

The in�uence of the recombinationprocess on theHIVquasispecies dynamics under absence of antiretro-

viral therapy is shown in Fig. 2. We can see the dominance of the wild-type viruses (WT); the number of all

mutants resistant to AZT is less by 5–10 orders. The recombination increases the fraction of mutants with

low �tness for given set of parameters. We note that the solution of the model re�ects the sizes of HIV RNA

population per ml of blood. The total size of the virus population in the body is within the range from 109 to

1012, which allows us to estimate the total number of resistant mutants.

Figure 3 illustrates the dynamics of the amount of AZT-resistant quasispecies in the HIV population in

the presence of an antiviral drug (the concentration equals 0.3 µM) in the case of an initially homogeneous

population consisting of wild-type (a) and heterogeneous initial population containing the same number of

all eight genotypes (b).

For this set of parameters and the method of description the recombination accelerates the appearance

of resistant mutants. Regardless of the initial composition of the virus populations, the proportions of qua-

sispecies tend to their stationary values and the qualitative e�ect of recombination results in a more intense

mixing of genomes and increases the portion of poorly adapted quasispecies.

3 Stochastic model of HIV quasispecies dynamics

A generalization of the deterministic model for the dynamics of quasispecies by inclusion of the double in-

fection and recombination process with reverse transcription of proviral RNA into the description of the phe-

nomenon leads to a signi�cant technical complication in the structure of themodel. Amore natural approach

to modelling the variability of HIV is the construction of stochastic models on the basis of genetic algorithms

(GA) [6] taking into account the discreteness of the number of mutants, structure of RNA nucleotide chains,

and randomness in implementation of mutations and recombination. Genetic algorithms, �rst proposed by

Holland [17], are widely used in evolution modelling and optimization [15, 16, 24]. The general scheme of a

genetic algorithm is presented in Fig. 4.

Constructing amodel basedonGA, thepopulationof virus genomes is speci�edby an ensemble of vectors

of length N, {Sk}, k = 1, . . . , n, the components of those vectors take one of four values, Skj ∈ {A,C,G,T}, and

each of them is characterized by the �tness value f (Sk). The implementation of the probabilistic selection

procedure based on �tness values uses the roulette principle [24]. For each generation we mark n sectors

on the roulette (Fig. 4b)), the part of the kth sector in the total area of the circle is assumed to be equal to

qk = fk

(

∑n
j=1 fj

)−1
, where fk = f (Sk). Further, the roulette is spun n times specifying each time the sector

number where the arrow stops. The individual corresponding to that number is selected in the population for

the next generation. Thus, individuals are selected to the population of new generationwith the probabilities

qk proportional to their �tness values fk.

According to the results of [26], the GA model implements single, double, and triple infections of the

target cells. The generation of recombinant genomes is performed in accordance with the scheme presented

in Fig. 5. In order to describe qualitatively the degree of genetic inhomogeneity of the viral population, we

de�ne the mean Hamming distance for the population in the following way:

D =
2

n (n − 1)

n
∑

k=1

n
∑

j<k

N
∑

i=1

d(Ski , Sji)
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Figure 2. The variation of the number of the HIV quasispecies for equal initial number of quasispecies without AZT in a double

infection in the case of diversi�cation; (a) under the action of point mutations, (b) subject to recombination.
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Figure 3. The dynamics of the number of AZT-resistant mutants for the drug concentration equal to 0.3 µM subject to mutations

and recombination with double infection; (a) under the action of point mutations, (b) subject to mutation and recombination.

(a) (b)

(c)

Figure 4. Genetic algorithm; (a) scheme of genetic algorithm; (b) roulette principle [24] for calculation of descendant selection

probability based on adaptation values. Example for an ensemble of 4 quasispecies; (c) roulette principle for calculation of

base mutation probability according to the data from Table 1.
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(a) (b)

(c)

Figure 5. The results of recombination in multiply infected target cells; (a) single; (b) double; (c) triple.

where N is the length of genome, n is the size of population, and

d (Skl , Skm) =

{

0, Skl = Skm
1, Skl 6= Skm .

The general structure of computation process can be represented as the following pseudocode imple-

menting the corresponding operators of changing the size and structure of genome population.

1 Initialize: population (t = 0)

do t = 0, 1, tmax

P(t) = population(t)

2 P[2](t) = introduce mutations (P(t))

3 P[3](t) = apply recombination (P[2](t))

4 P[4](t) =perform replication (P[3](t))

5 P[5](t) = realize multi-infection (P[4](t))

6 P[6](t) =perform �tness based selections (P[5](t))

7 Estimate the Hamming distance: D

8 P[7](t) =update the population (P[6](t))

9 population (t) = P[7](t)

enddo

The initialization of the population (Stage 1) can be performed in di�erent ways, e.g., by random generation

of a virus RNA sequence that is copied after that up to the size of the population, by random generation of

particular genomes of the population, etc. At Stage 2 (mutations) we test the probability of point mutation for

each element of the ‘population’ array. In the case of success, we replace the nucleotide at a random position

according to the roulette mechanism. At Stage 3 (recombination) we test the probability of recombination

for the successive pairs of ‘population’ array elements. In the case of success we exchange the portions of

nucleotides beginning with a random number. One of two recombinant chains are selected with equal prob-

ability. The RNA array P[i](t) is updated. Further (determination of types) we check whether the elements of

the RNA array belong to one or the other type of mutants. The elements of RNA types array (the number of an

element in the RNA array) is assigned with the type of mutant. Implementing the processes of ‘replication’

and ‘formation of virions’, we specify the array where the virions are represented by the pairs of subsequent

chains selected from the RNA pool. In the case of single infection the virion is composed from two identical

chains, in the case of double and triple infection it is composed from all pairwise collections of two or three

selected chains. In the case of multiple infection the index in the array of ‘number of virions’ is calculated

to ensure the equality of the total amount to the coe�cient of reproduction. The number of mutants of each
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type is counted. In order to implement the ‘selection’ on the base of RNA types array and the array ‘number

of virions’, we perform selection into the new population according to the �tness function for di�erent dos-

ing of antiviral preparation. In this case the virion containing chains with di�erent mutations possesses the

following properties: it belongs to two types of the corresponding mutants and has the �tness equal to the

mean �tness value over all mutants.

A parallel version of the genetic algorithm is implemented taking into account the natural parallelism of

the problem of realization of an ensemble of evolution processes, i.e., several populations are formed, each

population is processed separately and is developed independently of others. The numerical implementation

of the model is written in Visual Fortran and Open MPI. The key element of the stochastic model is the gen-

erator of random numbers. In this work we used an original generator of random numbers implemented in

Fortran. Calls to this generator used system time as arguments, a certain linear transformation was applied

to the obtained result.

Numerical calculations were performed for populations having the following parameters: the length of

genome nucleotide chain was 1800; the size of genome population was 500 virions (1000 chains); the proba-

bility of pointmutationwas 0.2; the probability of recombinationwas 0.5 per genome in one replication cycle;

the replication coe�cient varied within a wide range in one replication cycle. The portion of single infected

cells was 80%, double infected – 14%, triple infected – 6%. Although the calculation time for one replication

cycle does not exceed one second on Intel CPU 2.2 GHz, the size of population and the length of genomes are

critical parameters for calculations with the model. These values can be increased up to one order.

Belowwepresent the calculation results for the scenariowhen the initial population contains equal num-

ber of chains (of mutants) of each type, i.e.,

1 chains of virions of the wild type (WT) contain amethionine (ATG) and threonine (ACC) at 45th and 215th

positions, respectively,

2 in contrast with the wild type, the quasispecies M41L contains leucine (TTG) at 41st position,

3 the quasispecies T215N contains asparagine (AAC) at 215th position,

4 the quasispecies T215S contains serine (TCC) at 215th position,

5 the quasispecies T215Y contains tyrosine (TAC) at 215th position,

6 the quasispecies M41L+T215N di�ers from wild type at two positions, as well as two following ones

7 the quasispecies M41L+T215S,

8 the quasispecies M41L+T215Y.

The relative dynamics of HIV quasispecies subject to mutations and recombinations is shown in Figure 5 in

the case of heterogeneous infection in the absence of therapeutic drug (AZT). The in�uence of the replication

factor on the variation of quasispecies ratio in the HIV populations is of interest. Figures 6a–6c present the

calculation results for the replication coe�cients of 24, 600, and 6000 virions per cell in a replication cycle,

respectively. It is seen that with increasing scale of replication the proportion of mutants is increased, while

the subpopulation of wild type is reduced. We present portions of considered quasispecies averaged over 80

realizations (wild type and 7 mutants) for 10000 replication cycles (1 cycle takes about 1.5 days). The qualita-

tive nature of the distribution of genotypes in the population is consistent with the results of the di�erential

models taking into account the recombination (Fig. 2b), however, the di�erences in the sizes are signi�cantly

less. This argues for studying the correspondence between the parameters of GA and ODE models.

Figure 7 presents the comparative dynamics of the virus population for the replication coe�cient equal

to 24; (a) without antiretroviral preparation and (b) for the casewhen the concentration of AZT equals 0.3 µM.

For the replication coe�cient equal to 24, only the most adapted quasispecies (M41L+T215Y) remain in the

virus population. If we reduce the replication coe�cient down to 6 in the case of injection of the antiviral

preparation (AZT concentration equals 0.3 µM), all the genomes, except for one (M41L+T215Y or T215Y), dis-

appear during the �rst few replication cycles (graph is not shown). The growth of the replication coe�cient

also causes a growth of the stochasticity of population dynamics as is shown in Fig. 8. The curves presented

in Figs. 8a and 8b illustrate the variation of relative sizes of quasispecies in the virus population averaged

over 80 implementations for the replication coe�cient equal to 600 and 6000, respectively, and for the AZT
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(a) (b)

(c)

Figure 6. Averaged dynamics of quasispecies without AZT for di�erent values of the replications coe�cient; (a) 24; (b) 600; (c)

6000.

(a) (b)

Figure 7. Dynamics of the HIV quasispecies; (a) without AZT; (b) for AZT concentration 0.3µ M. The coe�cient of replication is

24 in both cases.

(a) (b)

Figure 8. Dynamics of the HIV quasispecies resistant to AZT for the AZT concentration equal to 0.3µ M for the replication coe�-

cient equal to (a) 600; (b) 6000.
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concentration equal to 0.3 µM. It is seen that large population reproduction coe�cients allow both better and

weaker adapted mutants to survive.

Thus, the choice of the replication coe�cient essentially a�ects the proportion of the HIV population

quasispecies. For small values of the replication coe�cient an initially heterogeneous population turns into

a practically homogeneous one (the genotype characterized by the greatest value of the adaptation function

remains). On the contrary, a large replication coe�cient leads to a heterogeneous population with a less

pronounced dominance of most �tness quasispecies.

4 Conclusions

In this paper we present two approaches to modelling the mutants population dynamics on the base of de-

terministic and stochastic description of the processes. Speci�cally wemodel the HIV quasispecies evolution

under the action of selection caused by di�erences in �tness values of mutants partly or completely resistant

to AZT.

A mathematical model of HIV diversi�cation is constructed on the base of an ODE system of the quasis-

pecies framework to study the genetic variability ofHIV in the course of infection.Alongwithpointmutations,

themodel describes recombination processes considering the possibility of double infection of cells. We note

that a more biologically adequate approach to parameterization of the recombination process action on the

appearance of mutants has to be based on consideration of linkage disequilibrium in the model, which leads

to a bilinear dependence of birth–elimination processes of mutants as was shown in [5] for the model of two-

locus two-allele mutants, or in a more general form in [2]. However, the practical implementation of this type

of parameterization is restricted by signi�cant complication of the ODEmodel of quasispecies dynamics and

requires further studies with the use of tensor products and construction of small-parametric representations

[22, 23] whose great potential in the problems ofmathematical immunologywas pointed out by G. I. Marchuk.

Further, a model of the virus population evolution taking into account random point mutations, recom-

bination, replication of viral genomes, and selection of progeny according to the degree of adaptation is con-

structed on the base of genetic algorithms. A four-letter alphabet of nucleotide encoding is used. Single- and

multi-infection of target cells are implemented in the model. The calibration of the model uses original ex-

perimental data on the �tness of mutants resistant to the antiviral AZT preparation that blocks reverse tran-

scription of the viral RNA into proviral DNA.

For a number of characteristics, the mathematical models constructed here are more realistic from the

viewpoint of the HIV infection biology than other existing models in this area. The stochastic model imple-

ments the following replicationprocess: (1) viral genomes (with the lengthof 1800bases) encodedbya4-letter

alphabet, (2) the sizes of viral populations (up to 104), and (3) the coe�cient of virus replication (up to 104).

Within the framework of the deterministic model, processes of recombination leading to the appearance of

drug-resistant mutants are parameterized. The comparison of solutions of two types of models demonstrates

the need of further re�nement of the parameter estimation procedure in the deterministic model according to

experimental data on replication of mutants and clinical data on drug resistance. For small HIV populations,

characteristic of replication processes localized in individual lymph nodes a natural simulation approach is

the use of genetic algorithms. Consideration of HIV throughout the whole organism makes it necessary to

follow descriptions based on ODE systems. However, some problems of parameter calibration and descrip-

tion of recombination in the context of multi-infection appear here. It seems that an approach considering

virus populations together with classes of target cells infected by di�erent kinds of speci�c mutants will be

meaningful here.

The treatment of the HIV infection based on antiretroviral therapy reduces the viral load, but does not

solve the problem of elimination of viruses. In this case, as was shown in recent studies [11], viral genomes in

latently-infected cells contain variants ofHIVwithmutations inGaggenes coding the regions recognizedbyT-

cells, i.e. escaping from the cytotoxic immune response. The ability of HIV to escape from immune response
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is one of the most important mechanisms of pathogenesis of this infectious diseases and requires further

studies with the use of mathematical models.

The virus population is a heterogeneous (with respect to antigens) ensemble of genomes with high adap-

tive potential to the action of humoral and cellular neutralization factors (selection). It is based on a high

frequency of mutations and recombination of virus genomes in the case of multiple infections of target cells.

The classical models of antiviral immune response developed by G. I. Marchuk consider virus populations

being antigenically homogeneous. The application of these models for the analysis of the HIV infection

involves the development of description methodology to take into account the antigenic heterogeneity and

virus populations variability. The results presented in this paper, as well as other works in this area [3],

show that the ability to describe the evolution of HIV using standardmodels of quasispecies dynamics based

on di�erential equations by introducing into consideration the recombination of genomes is very limited

due to the complexity of parameterization of transitions between particular quasispecies forming the en-

semble of considered mutants. The use of discrete approaches based on genetic algorithms modelling the

evolution of quasispecies as a population of vectors of the given length signi�cantly enhances our abil-

ity to naturally describe the mutation and recombination processes [27]. Simulation of genomic sequences

based on GA makes the urgent task of adjustment of discrete-stochastic models of the HIV quasispecies to

continuous-deterministic modelling of immuno-physiological reactions. Overall, the proposed approach to

the description of the HIV quasispecies diversi�cation forms a basis for further research related to the anal-

ysis of development of ‘resistance’ patterns to the action of a combination of drugs and ‘escape’ from the

immune response with the use of mathematical modelling.
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