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Abstract

This paper applies random matrix theory to obtain analytical characterizations of the
capacity of correlated multiantenna channels. The analysis is not restricted to the popular
separable correlation model, but rather it embraces a more general representation that sub-
sumes most of the channel models that have been treated in the literature. For arbitrary
signal-to-noise ratios (SNR), the characterization is conducted in the regime of large num-
bers of antennas. For the low- and high-SNR regions, in turn, we uncover compact capacity
expansions that are valid for arbitrary numbers of antennas and that shed insight on how
antenna correlation impacts the tradeoffs between power, bandwidth and rate.
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I Introduction

A The UIU Model

CONSIDER nT transmit and nR receive antennas with the corresponding multiantenna
channel described by the complex model

Hi = URH̃iU
†
T (1)

where UR and UT are nR × nR and nT × nT deterministic unitary matrices while {H̃i} is a
stationary and ergodic sequence of nR × nT random matrices. The entries of H̃i are zero-
mean and independent with arbitrary marginal distributions and variances, constrained
only to satisfy the normalization1

E
[
Tr

{
H̃H̃†

}]
= nRnT. (2)

Because of the Unitary-Independent-Unitary structure of (1), we refer to this model as
UIU. The goal of this paper is to characterize the capacity of UIU channels, whose defining
property is being unitarily equivalent (i.e., same singular values) to a channel with IND
(independent nonidentically distributed) entries. It will be also useful to recognize that
H̃ is the KLT (Karhunen-Loève transform) of H.

The UIU framework encompasses most of the zero-mean channel models that have been
treated in the multiantenna literature:

• If H̃ has IID (independent identically distributed) Rayleigh-faded entries, then H is
also IID Rayleigh-faded and we are faced with the canonical channel considered in the
early pioneering works in multiantenna communication [1, 2]. While very simple, this
canonical model enabled a number of fundamental observations on the benefits that
accrue as function of the numbers of antennas. Subsequent contributions built around
the canonical model include [3]–[5].

• If the entries of H̃ are Rayleigh-faded with variances that conform to a certain pat-
tern (cf. Section III), the UIU channel reverts to the separable correlation model [6]–[8].
Equivalently, this model can be expressed as

H = Θ
1/2
R HwΘ

1/2
T (3)

where ΘR and ΘT are deterministic receive and transmit correlation matrices while Hw

is IID Rayleigh-faded. If the entries of H are identically distributed, then the diagonal

1Henceforth, we drop the temporal index i.
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entries of ΘR and ΘT equal 1. The most salient feature of the model in (3) is that the
correlation between two transmit antennas is restricted to be the same irrespective of
the receive antenna where it is observed and, conversely, the correlation between two
receive antennas is restricted to be the same irrespective of the transmit antenna where
it is observed. In channels spanned by space diversity arrays,2 this constraint is often
satisfied since the immediate surroundings to each array determine the spatial correla-
tion between its antennas but have no impact on the spatial correlation at the other end
of the link [9]. The separable model is often adequate and analytically friendly. It has
been—and it continues to be—the cornerstone of a large number of analyses [10]–[16].

• If UR = I and UT = I, then the UIU channel reduces to an IND channel. This chan-
nel can describe the use of either polarization diversity3 or pattern diversity,4 which are
becoming increasingly popular complements—and even alternatives—to space diver-
sity [19]. These forms of diversity, especially alluring in small handheld terminals,
often result in minimal correlation between the channel coefficients but possibly large
disparities in their strength and distribution.

• If UR and UT are Fourier matrices while H̃ is IND Rayleigh-faded, the UIU model
delivers the virtual representation pioneered in [20]. At the expense of restricting its
scope to space diversity ULAs (uniform linear arrays), this representation enables the
insightful physical interpretation of the columns of UR and UT as steering vectors re-
ceiving and launching energy on specific spatial directions.

• If UR and UT arbitrary unitary matrices while H̃ is IND Rayleigh-faded, we obtain the
generalization of the virtual model proposed in [21] and [22] and experimentally vali-
dated in the latter. This representation encompasses Rayleigh-faded channels with cor-
relation structures that cannot generally be represented through the separable model
[23].

The above channels give rise to distinct correlation structures whose impact on the capac-
ity we seek to determine. Models that fall outside the UIU framework include:

• The keyhole channel, where H is given by the outer product of two random vectors with
zero-mean independent entries [24, 25]. The entries of H are thus uncorrelated (but not
independent). The capacity of this channel is studied in [5].
2By space diversity arrays we mean those composed of homogeneous antennas. Diversity is obtained

exclusively through antenna spacing.
3Antennas with orthogonal polarizations may provide low levels of correlation with minimum or no

antenna spacing [17] while making the communication link robust to polarization rotations in the channel
[18].

4Antennas with different radiation patterns or with rotated versions of the same pattern (in which case
the term angle diversity is also common) may discriminate different multipath components and reduce cor-
relation.
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• The channel with diagonal correlations considered in [26, 27]. In this model, defined
explicitly for nT = nR = 2, the so-called diagonal correlations (between h1,1 and h2,2 on
one hand and between h1,2 and h2,1 on the other hand) are free parameters rather than
related to the other correlations as in the UIU model.

Note also that the UIU model only accommodates zero-mean channels. As it turns out,
nonetheless, for large numbers of antennas the addition to the model of an unfaded (i.e,
deterministic) matrix becomes immaterial in terms of the capacity as long as such matrix
does not have full rank. For arbitrary numbers of antennas, capacity characterizations
for nonzero-mean channels are available in the specific case of the IID Ricean distribution
[28, 29, 30].

B Scope

The capacity of a UIU channel becomes analytically tractable asymptotically, either in the
large-dimensional regime or as the signal-to-noise ratio (SNR) approaches zero or infinity.
Fortunately, the usually rapid convergence to these limits renders the expressions derived
therein relevant to a wide range of nonasymptotic scenarios [9, 31, 32]. Accordingly, we
seek to characterize the capacity (i) asymptotically in the number of antennas for arbi-
trary SNR, and (ii) for arbitrary numbers of antennas at low and high SNR. Along the way,
we exemplify the applicability of these analytical characterizations to several channels of
interest. The specific contributions of the paper are:

• We find the asymptotic (nR, nT → ∞) capacity of IND channels. Although, in its full
generality, such capacity is the solution of a fixed-point equation, for a class of IND
matrices that embodies several channels of interest an explicit expression is found.

• We show how, exploiting their unitary equivalence, the asymptotic capacity of the var-
ious UIU structures described in the previous section can be mapped from that of an
IND channel. Particular emphasis is given to the separable correlation model.

• Several key low- and high-SNR performance measures are characterized for arbitrary
numbers of antennas. In addition, we analyze the high-SNR power offset introduced in
[33] (see also [34]).

• Besides the capacity, the spectral efficiency achievable with isotropic inputs is also
characterized.

In addition to single-user multiantenna communication, IND channels surface in other
contexts such as multiaccess, broadcast, multicell, etc. Some of our results in a conference
version of this paper [35] have already been applied to these related problems [36, 37].
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The manuscript is organized as follows. Section II puts forth notation and some useful
definitions. Section III details the various classes of correlation structures that are ac-
commodated by the UIU model. In Section IV, the capacity-achieving input is identified.
Section V is devoted to the large-dimensional analysis for arbitrary SNR. The analysis in
Section VI, in contrast, is for arbitrary numbers of antennas. Finally, Section VII asserts
the impact of antenna correlation by drawing insight from the analysis in the preceding
sections.

In the large-dimensional analysis of the capacity, the main tool is the theory of large
random matrices [38]. Specifically, the mathematical framework provided by Girko [39]
proves instrumental in the asymptotic analysis of IND channels presented in Section V.
Girko’s theorem, reproduced in Appendix B, has been applied to diverse problems such
as multicarrier CDMA [40] and CDMA networks with multiuser receivers [41]. It has
also been used to examine the asymptotic capacity scaling with the number of antennas
of certain multiantenna channels [10, 42]. A very fertile result, Girko’s theorem allows
us not only to characterize the asymptotic multiantenna capacity but to express it as sole
function of the MMSE (minimum mean-square error) incurred in the linear estimation of
the corresponding input. This dependence imbues the solutions with direct engineering
significance. For certain classes of IND matrices, Girko’s framework reverts to the more
restrictive Silverstein-Bai framework [43], which has also seen extensive use in the infor-
mation theory literature [33, 44, 45]. Furthermore, for a specific class of IND matrices,
both the Girko and Silverstein-Bai frameworks are shown in Section V to be equivalent to
the classical Marc̆enko-Pastur law that governs the asymptotic behavior of matrices with
IID entries [46].

II Preliminaries

A Definitions

Our complex baseband model is

y =
√

g Hx + n (4)

where x and y are the input and output vectors while n is white Gaussian noise with
one-sided spectral density

N0 =
E[‖n‖2]

nR

. (5)

The channel is represented by the nR × nT zero-mean random matrix
√

g H where H =
{hi,j} and hj is the jth column of H. When the fading process is frequency selective, the
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channel can be decomposed into a number of sufficiently narrow parallel subchannels,
each undergoing frequency-flat fading and having the same ergodic capacity as the ag-
gregate channel. Thus, it suffices to consider flat fading which results in the entries hi,j

being complex scalars. These entries are normalized in accordance with (2), which puts
different channels on an equal footing in the sense that any differences in average gain
are factored out of H and absorbed into

SNR , g
E[‖x‖2]

N0

. (6)

The covariance of the input, normalized by its energy per dimension, is denoted by

Φ , E[xx†]
1

nT
E[‖x‖2]

(7)

where the normalization ensures that Tr{Φ} = nT. If the input is isotropic, then Φ = I.
An eigenvalue decomposition of Φ yields

Φ = VPV† (8)

with V unitary and P diagonal. The columns of V represent the signaling directions while
the diagonal entries of P represent the normalized powers allocated to those directions,
constrained such that Tr{P} = nT.

Our focus is on channels known instantaneously at the receiver but known only in distri-
bution at the transmitter. The mutual information in bits/s/Hz achieved by a zero-mean
Gaussian input is

I(SNR,Φ) = log2 det
(
I + SNR

nT
HΦH†

)
(9)

from which the ergodic spectral efficiency is E[I(SNR,Φ)] and the ergodic capacity is

C(SNR) = max
Φ:Tr{Φ}≤nT

E [I(SNR,Φ)] (10)

Additional definitions that will be invoked are:

Definition 1 A nR × nT matrix A taking values in A ⊂ <+ is mean column-regular if the mean
of the entries of every column is the same, i.e., if 5

1
nR

nR∑
i=1

(A)i,j

does not depend on j.
5Throughout the paper, (·)i,j indicates the (i, j)th entry of a matrix.
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Definition 2 A matrix A is mean row-regular if AT is mean column-regular.

Definition 3 A matrix A is mean doubly-regular if it is both mean column-regular and mean
row-regular.

Some stricter regularity conditions can also be defined [38]:

Definition 4 A nR × nT matrix A taking values in A ⊂ <+ is column-regular if the entries of
every column exhibit the same empirical distribution, i.e., if

1
nR

nR∑
i=1

1{(A)i,j < ξ}

does not depend on j, with 1{·} the indicator function.

Definition 5 A matrix A is row-regular if AT is column-regular.

Clearly, a column-regular matrix is always mean column-regular and a row-regular ma-
trix is always mean row-regular.

When any of the regularity conditions in Definitions 1–5 takes hold only as the size of the
matrix goes to infinity, we say that the corresponding matrix is asymptotically regular.

B Performance Measures

In order to evaluate the tradeoffs between power and bandwidth [13], it is often conve-
nient to express the capacity, not only as function of the SNR, but also as function of the
transmitted energy per bit relative to the noise level

Eb

N0

=
E[‖x‖2]

N0 C(SNR)
(11)

=
SNR

g C(SNR)
. (12)

For many purposes, expansions of C( Eb

N0
) in the low- and high-SNR regions suffice. The

value of these expansions is reinforced by the rapid transition between the low- and the
high-SNR regimes. We shall evaluate these expressions for Eb

N0
in dB.
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C Low SNR

Denoting by Eb

N0 min
the minimum energy per bit required for reliable communication and

by S0 the slope therein in bits/s/Hz/(3 dB), the low-SNR capacity can be posed as [47]

C( Eb

N0
) = S0

Eb

N0
|dB − Eb

N0 min
|dB

3 dB
+ ε (13)

with 3 dB,10 log10 2 and

ε = o

(
Eb

N0

|dB − Eb

N0 min

|dB

)
. (14)

Using (11), we can unravel (13) and relate the capacity to SNR via

SNR|dB =
C

S0

3 dB + 10 log10 C +

(
g

Eb

N0 min

)
|dB + o(C). (15)

D High SNR

At high SNR, the capacity behaves as [33]

C(SNR) = S∞

(
SNR|dB

3 dB
− L∞

)
+ o(1)

where S∞ denotes the high-SNR slope in bits/s/Hz/(3 dB) while L∞ represents the high-
SNR power offset, in 3-dB units, with respect to a reference channel whose dimensions
are unfaded and orthogonal, i.e., such that 1

nT
HH† = I. In multiantenna channels, S∞

exhibits little dependence on the structure of H and thus, in most cases, only L∞ reflects
the distinctiveness of each channel at high SNR [34].

To relate the high-SNR capacity with Eb

N0
, we can again use (11) to obtain [33]

Eb

N0

|dB =

(
C

S∞
+ L∞

)
3 dB− 10 log10 C− g|dB + o(1).

We note that S∞ represents the high-SNR slope in terms of either SNR or Eb

N0
, both measured

in 3-dB units.

III The UIU Model Revisited

Since our focus is on characterizing the impact of antenna correlation, a detailed descrip-
tion of the correlation structures accommodated by the UIU model is in order. To this
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end, let us denote the correlation between the (i,j)th and (i′,j′)th entries of H by

RH(i, j; i′, j′) , E
[
hi,jh

∗
i′,j′

]
. (16)

A tool that facilitates the connection between correlated channels and the UIU model is
the KLT, widely used in signal and image processing.

A The Karhunen-Loève Transform

Applied to any channel H with zero-mean correlated entries, the KLT delivers a trans-
formed channel whose entries are uncorrelated and given by

h̃k,` =

nR∑
i=1

nT∑
j=1

hi,j ψ∗k,`(i, j) (17)

where the KLT kernel {ψk,`(i, j)} is a set of complete orthonormal discrete basis functions
formed by the eigenfunctions of RH, i.e., satisfying

nR∑

i′=1

nT∑

j′=1

RH(i, j; i′, j′) ψk,`(i
′, j′) = λk,`(RH) ψk,`(i, j) (18)

where λi,j(·) denotes the (i, j)th eigenvalue.

A.1 Factorable KLT Kernel

If the KLT kernel can be factored as

ψk,`(i, j) = uk(i) v`(j), (19)

then

H = URH̃U†
T (20)

with

(UR)i,k = uk(i) (21)
(UT)`,j = v∗j (`) (22)

which renders UR and UT unitary. Condition (19) is tantamount to the requirement that
the covariance and cross-covariance matrices of the rows of H share the same eigenvec-
tors, UR, while the covariance and cross-covariance matrices of the columns of H share
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the same eigenvectors, UT [20, 22]. Whenever (19) is upheld and the entries of H̃ are inde-
pendent (e.g., if H is Rayleigh-faded), then the channel falls within the UIU framework.
The columns of UR and UT correspond, respectively, to the eigenvectors of E[HH†] and
E[H†H] whereas the variances of the entries of H̃ are

E
[
|h̃i,j|2

]
= λi,j(RH) (23)

evidencing that the nRnT eigenvalues of RH, which determine the distribution of the mu-
tual information, are embedded in the variances of the entries of H̃.

If (19) is not upheld, then the KLT cannot be expressed as in (20) and the corresponding
correlation falls outside the UIU framework.

A.2 The Virtual Representation

If H is Rayleigh-faded and RH(i, j; i′, j′) is a function of only i − i′ and j − j′, as may
be the case when both transmitter and receiver are equipped with space diversity ULAs,
then the channel falls within the UIU framework and, as the number of antennas grows
large, UR and UT in (22) become Fourier matrices. This gives way to the intuitive virtual
representation propounded in [20]. (For arbitrary numbers of antennas, the independence
between the entries of H̃ in the virtual representation is only approximate.) Furthermore,
the variances of the entries of H̃ can in this case be physically interpreted as the power
coupling for specific transmit-receive angle pairs [42].

A.3 Separability

The separable correlation model is defined by (3), whereby RH(i, j; i′, j′) can be expressed
as the product of two marginal correlations that are functions respectively of (i,i′) and
(j,j′), i.e.,

RH(i, j; i′, j′) = (ΘR)i,i′(ΘT)j,j′ . (24)

As a result,
λi,j(RH) = λi(ΘR)λj(ΘT) (25)

evidencing that the nRnT eigenvalues of RH are determined by the eigenvalues of ΘR and
ΘT, that is, by only nR+nT−1 quantities. This restriction on the number of degrees of free-
dom in the eigenvalues of RH evidences the narrower scope of the separable correlation
model [20, 23, 48].

The separable model in (3) admits a UIU expression in which UR and UT coincide with
the eigenvector matrices of ΘR and ΘT, respectively, while H̃ is an IND Rayleigh-faded
channel whose (i, j)th entry has variance λi(ΘR)λj(ΘT).
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B IND Channels

Since the core of the UIU model is an IND channel, the approach taken in the sequel is
the following. Initially, we analyze IND channels H̃ and, subsequently, we show how the
corresponding capacities can be applied to other UIU channels by virtue of their unitary
equivalence. In addition to serving as a stepping stone towards more general results, the
IND channel is interesting on its own for it models situations where correlation is negli-
gible but the arrays contain antennas with distinct polarizations or radiation patterns. It
is also of interest in multiuser and multicell contexts [36, 37].

In order to manipulate IND channels, it is convenient to assemble the variances of the
entries of H̃ in a gain matrix G such that

(G)i,j , E
[
|h̃i,j|2

]
(26)

where (2) implies that
1

nRnR

nR∑
i=1

nT∑
j=1

(G)i,j = 1. (27)

Also useful are the column- and row-wise averages of G, which yield the vectors

gR = 1
nT

nT∑
j=1

(G)j (28)

gT = 1
nR

nR∑
i=1

(GT )i. (29)

where we have used (·)j to denote the jth column of a matrix. The ith entry of gR repre-
sents the average of the gains between the various transmit antennas and the ith receive
antenna while the jth entry of gT represents the average of the gains between the jth
transmit antenna and the various receive antennas.

Definition 6 We denote by n′R and n′T the number of nonzero entries in gR and gT, i.e., respec-
tively the number of rows and columns in H̃ that are not identically zero.

In an IND channel, n′R and n′T signify the number of receive antennas that capture power
and the number of transmit antennas from which power can be received. In a correspond-
ing UIU channel, these map respectively onto the number of nonzero receive and transmit
correlation eigenvalues.
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IV Input Optimization

A necessary step in the characterization of the capacity is the optimization of the normal-
ized input covariance, Φ = VPV†, which for channels that are known only statistically at
the transmitter cannot depend on H. Henceforth, we shall use the superscript ? to distin-
guish the capacity-achieving value of any quantity that relates to the input covariance.

Theorem 1 [49, 42] Consider the UIU channel

H = URH̃U†
T (30)

with UR and UT unitary while H̃ has independent entries whose marginal distributions are sym-
metric with respect to zero. The eigenvector matrix of the capacity-achieving input covariance is
V? = UT.

A set of necessary and sufficient conditions that characterize the power allocation P? =
diag{p?

j}, for any arbitrary channel, are given in [49]. A central role in the formulation of
these conditions is played by the MMSE on the linear estimation of the signals transmitted
along each of the directions determined by the columns of V?. Deconstructing the input
as

x = V?P1/2s (31)

where the information-bearing vector s = [s1, . . . , snT
]T has IID unit-variance Gaussian

entries and defining

B ,
(
I + SNR

nT
H̃PH̃†

)−1

, (32)

the MMSE of a linear estimate of sj from y, conditioned on the channel realization, is

MMSEj = 1− pj
SNR
nT

h̃†jBh̃j. (33)

The signal power recovered from the jth signalling direction is given by 1 − MMSEj and
thus the corresponding signal-to-interference-and-noise ratio is

SINRj =
1− MMSEj

MMSEj

(34)

= pjγj (35)

with

γj ,
SNR
nT

h̃†jBh̃j

1− pj
SNR
nT

h̃†jBh̃j

. (36)

The expectations of (33) and (36) with respect to H̃, in turn, are denoted by

MMSEj , E[MMSEj] (37)
γj , E[γj]. (38)
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Using the foregoing definitions, the normalized transmit powers that achieve capacity
satisfy [49]

p?
j = 0 γj ≤ 1

nT

nT∑

`=1

(1− MMSE`) (39)

p?
j =

1− MMSEj

1
nT

∑nT

`=1 (1− MMSE`)
γj > 1

nT

nT∑

`=1

(1− MMSE`) (40)

An iterative algorithm to find the power allocation that satisfies these conditions is given
in [49]. This allocation simplifies drastically at both low and high SNR:

• For SNR → 0, the entire power budget should be allocated to the maximal-eigenvalue
eigenspace of E[H†H] for first- and second-order optimality [47, Theorem 12]. For a
UIU channel, this implies that the only nonzero diagonal entry of P? is the one corre-
sponding to the maximal diagonal value of E[H̃†H̃]. If the multiplicity of such maximal
value is plural, the corresponding diagonal entries of P? are equal [47].

• For SNR →∞, only the diagonal entries of P? that correspond to nonzero diagonal en-
tries of E[H̃†H̃] are nonzero. While this suffices to maximize the slope S∞, minimizing
L∞ further demands that these nonzero diagonal entries of P? be appropriately ad-
justed. For n′T ≤ n′R, the correct adjustment is to make them equal. For n′T > n′R, this
need not be the case [49, 50].

In the special case of separable correlations:

• V? is defined by the eigenspace of the transmit correlation, ΘT, as claimed in [12, 15,
51, 52]. (See also [53, 54] for multi-transmit single-receive channels.)

• The receive correlation, ΘR, enters only the computation of the powers within P?.
Moreover, at low SNR it plays no role.

• If the correlation takes place only at the receiver, then the capacity-achieving input is
isotropic.

In an IND channel, V? = I and thus each diagonal entry of P maps directly onto a trans-
mit antenna. Consequently, pj represents the normalized power allocated to the jth trans-
mit antenna while (GP)i,j represents the normalized power received by the ith receive
antenna from the jth transmit antenna.

The capacity-achieving power allocation is uniform for IND Rayleigh-faded channels
whose gain matrix G in (26) is column-regular [49]. As we shall see in the next section
(cf. Theorem 2), asymptotically in the numbers of antennas this result extends to any IND
channel whose gain matrix is column-regular.
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V Asymptotic Analysis

The mutual information in (9) can be rewritten as function of the eigenvalues of 1
nT

HΦH†

via

I(SNR,Φ) =

nR∑
i=1

log2

(
1 + SNR λi(

HΦH†
nT

)
)

. (41)

In the regime of large numbers of antennas, it is more convenient to operate with the
mutual information per receive antenna, sure to remain finite, which converges asymp-
totically a.s. (almost surely) to

1
nR

I(SNR)
a.s.→

∫
log2(1 + SNR ξ) dF (ξ) (42)

where F (ξ) returns the fraction of the eigenvalues {λi} that fall below ξ. Since (42) de-
pends on the channel only through F (·), its study continues to profit from advances in the
characterization of the eigenvalues of random matrices (see [38] and references therein).

Although the asymptotic analysis in the remainder of this section deals exclusively with
zero-mean channels H, the asymptotic expressions apply also to any nonzero-mean chan-
nel H̄+H where the deterministic mean matrix H̄ has rank κ satisfying [38, Lemma 2.22]

lim
nR→∞

κ

nR

= 0. (43)

In this case, however, the convergence of the capacity to its asymptotic value may be
significantly slower than in their zero-mean counterparts [55].

A Asymptotic Analysis: IND Channels

Define the ratio
β , nT

nR

(44)

and consider an IND channel H̃ whose entries are arbitrarily distributed6 with uniformly
bounded variances. Associated with the gain matrix G in (26), we define a gain profile that
maps the entries of G onto a two-dimensional piecewise constant function

G(nR)(r, t) , (G)i,j
i

nR
≤ r < i+1

nR
, j

nR
≤ t < j+1

nR
(45)

6In the solutions for the capacity, which involve input optimization, the distribution of each entry must
be symmetric with respect to zero. For all other results, this need not be the case.
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supported on r ∈ (0, 1) and t ∈ (0, β). We can interpret r and t as normalized receive and
transmit antenna indices. Similarly, we define marginal transmit and receive gain profiles
by mapping the entries of the vectors gT and gR onto the functions

G(nR)
R (r) ,

(
gT

R

)
i

i
nR
≤ r < i+1

nR
(46)

G(nR)
T (t) ,

(
gT

T

)
j

j
nR
≤ t < j+1

nR
(47)

Invoking Theorem 1, we can restrict the input covariance to be diagonal (i.e., V? = I) with
the entries along the diagonal of P uniformly bounded. Associated with P we define an
input power profile given by

P(nR)(t) , pj
j

nR
≤ t < j+1

nR
(48)

and supported on t ∈ (0, β). This profile specifies the power allocation across the transmit
array.

We shall assume that, as the number of antennas grows large, the gain profile converges
uniformly to a bounded function

G(r, t) , lim
nR→∞

G(nR)(r, t) (49)

referred to as asymptotic gain profile. At the same time, the marginal transmit and receive
gain profiles in (47) converge to corresponding asymptotic marginal gain profiles, GR(r)
and GT(t), which are immediately related to G(r, t) via

GR(r) = E [G(r, T)] (50)
GT(t) = E [G(R, t)] (51)

where the expectations are over the auxiliary random variables R and T, independent
and uniform on [0, 1] and [0, β] respectively, which serve as scanning normalized antenna
indices. The relationships in (50) and (51) are simply the asymptotic counterparts of (28)
and (29).

The power profile is also assumed to converge uniformly to an asymptotic power profile

P(t) , lim
nR→∞

P(nR)(t) (52)

The asymptotic capacity-achieving power profile is denoted by P?(t, SNR), which in gen-
eral depends on SNR.

Note that (7) and (27) imply that E[P(T)] = 1 and E[G(R, T)] = 1.
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In order to find asymptotic counterparts to n′T and n′R, we define the subsets

SR , {t ∈ [0, 1] : GR(r) 6= 0} (53)
ST , {r ∈ [0, β] : GT(t) 6= 0 (54)

such that Pr{R ∈ SR} and Pr{T ∈ ST} give, respectively, the fraction of rows and the
fraction of columns of H̃ that have a nonnegligible fraction of nonzero entries. All of our
asymptotic results ( i.e., whenever we write nR →∞) require that these two probabilities
be nonzero. We can then further define

β′ = β
Pr{T ∈ ST}
Pr{R ∈ SR} (55)

satisfying 0 < β′ < ∞.

A.1 MMSE, SINR and Input Optimization

Since, as shown in Section IV, the MMSE plays a central role in defining the capacity-
achieving power allocation, such is the starting point of our asymptotic analysis of IND
channels. More precisely, we begin with an asymptotic characterization of the SINR, from
which the MMSE follows. Recall, from (35) and (36), the SINR exhibited by the signal
radiated from the jth transmit antenna at the output of a linear MMSE receiver. Invoking
the matrix inversion lemma, such SINR is equivalent to

SINRj = SNR
nT

pjh̃
†
j

(
I + SNR

nR

∑

` 6=j

p`h̃`h̃
†
`

)−1

h̃j. (56)

Associated with SINRj we can define the sequence, indexed by nR, of functions

Γ(nR)(t, SNR) , SINRj

SNR
, j

nR
≤ t < j+1

nR
(57)

Lemma 1 Let H̃ be IND with asymptotic gain profile G(r, t) and let the asymptotic power profile
of the input be P(t). As nR →∞, Γ(nR)(t, SNR) converges a.s. to Γ(t, SNR) satisfying

Γ(t, SNR) =
P(t)

β
E


 G(R, t)

1 + SNR E
[

G(R,T)P(T)
1+SNR Γ(T,SNR)

|R
]

 (58)

where the expectations are over R and T, independent and respectively uniform on [0, 1] and [0, β].

Proof: See Appendix B.
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In the case that G is row-regular, (58) reverts to the well-known Tse-Hanly formula [44]
and hence Lemma 1 provides a generalization thereof.

Analogous to Γ(nR)(·, SNR), we can define a sequence of functions associated with the
MMSE as

Υ(nR)(t, SNR) , SNR MMSEj,
j

nR
≤ t < j+1

nR
(59)

which converges to the function

Υ(t, SNR) =
SNR

1 + SNR Γ(t, SNR)
. (60)

A related quantity whose asymptotic behavior is of interest is the matrix B defined in (32),
which appears in the expressions of the SINR and the MMSE. Specifically, the significance
lies on the diagonal entries of B whose average equals

1
nT

nR∑
i=1

(B)i,i = 1
nT

nT∑
j=1

MMSEj + nR

nT
− 1. (61)

The sequence of functions

B(nR)(r, SNR) , (B)i,i
i

nR
≤ r < i+1

nR
(62)

converges a.s. to B(r, SNR), which is the solution to (cf. Theorem 6)

B(r, SNR) =
1

1 + SNRβ E

[ G(r, T)P(T)

β + SNR E[B(R, SNR)G(R, T)P(T)|T]

] (63)

Comparing (58) and (63), respectively satisfied by Γ(·, SNR) and B(·, SNR), it is inferred that
these functions relate through

Γ(t, SNR) =
P(t)

β
E[G(R, t)B(R, SNR)]. (64)

Using Γ(·, SNR), Υ(·, SNR) and B(·, SNR), we can now formulate the asymptotic counterparts
of (39) and (40) and obtain the conditions that the asymptotic power profile must satisfy
to achieve capacity. As detailed in Appendix D, the corresponding P?(·, SNR) satisfies

P?(t, SNR) = 0 t /∈ T0 (65)

P?(t, SNR) =
Γ(t, SNR)Υ(t, SNR)

1− 1
SNRE[Υ(T, SNR)]

t ∈ T0 (66)

where
T0 ,

{
t ∈ [0, β] : SNR

β
E[G(R, t)B(R, SNR)] > 1− 1

SNRE[Υ(T, SNR)]
}

(67)
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The measure of this subset does not vanish at any SNR > 0 if β′ > 0, i.e., Pr{T ∈ T0} 6= 0 if
β′ > 0.

For a certain class of channels of interest, the asymptotic capacity-achieving power pro-
file simplifies drastically. Specifically, the isotropy of the capacity-achieving input for
IND Rayleigh-faded channels whose gain matrix is column regular [49] extends asymp-
totically to any IND channel.

Theorem 2 Consider an IND channel H̃ whose gain matrix G is column-regular. The asymptotic
capacity-achieving input is isotropic, i.e., P?(t, SNR) = 1 at every SNR.

Proof: See Appendix 2.

A.2 Capacity

The following asymptotic characterization of the mutual information, which capitalizes
on Girko’s theorem (cf. Appendix B), is one of the pivotal results in the paper.

Theorem 3 Let H̃ be IND with asymptotic gain profile G(r, t) and let the asymptotic power
profile be P(t). As nR →∞,

1
nR

I(SNR)
a.s.→ β E [log2(1 + SNR Γ(T, SNR))] + E [log2(1 + E[G(R, T)P(T)Υ(T, SNR)|R])]

−β E [Γ(T, SNR)Υ(T, SNR)] log2 e (68)

with expectation over R and T, independent and respectively uniform on [0, 1] and [0, β], and with
Γ(·, SNR) and Υ(·, SNR) defined in (58) and (60).

Proof: See Appendix C.

The asymptotic capacity is given by the right-hand side of (68) if the arbitrary P(t) is re-
placed by P?(t, SNR). The asymptotic spectral efficiency achievable with a uniform power
allocation can also be obtained from (68) simply by setting P(t) = 1.

Proposition 1 For any channel with IND entries satisfying the normalization in (27), the asymp-
totic spectral efficiency achieved by a uniform power allocation is upper-bounded by the value it
takes when the channel is IID.

Proof: See Appendix E.

As an alternative to (68), the asymptotic mutual information can be posed as function of
B(·, SNR). Plugging (64) into (68),

1
nR

I(SNR)
a.s.→ β E

[
log2

(
1 + SNR

β
E[G(R, T)P(T)B(R, SNR)|T]

)]
− E [log2 (B(R, SNR))]

+(E [B(R, SNR)]− 1) log2 e. (69)
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Although (68) and (69) are equivalent, they provide different interpretations. The former,
in particular, appears as functional of Γ(·, SNR) and Υ(·, SNR), which are not only functions
with direct engineering significance (SINR and MMSE respectively) but also sufficient
performance measures for a linear MMSE receiver. In fact, the first term on the right-hand
side of (68) is nothing but the asymptotic mutual information achievable with a linear
MMSE receiver and thus the remaining terms quantify the additional mutual information
achievable with an optimum receiver. Remarkably, this additional mutual information is
itself a functional of the SINR and MMSE and hence the asymptotic mutual information
of an optimum nonlinear receiver is completely determined by the performance measures
of a linear MMSE receiver. Additionally, as we saw in Section IV, the power allocation
that achieves capacity can also be formulated solely on the basis of the MMSE. Far from
coincidental, these various dependences are manifestations of a fundamental relationship
between the mutual information and the MMSE [56].

Theorem 3 adopts relevant special forms whenever G exhibits certain structures. A com-
mon such structure occurs when G is given by the outer product of two vectors, in which
case G(r, t) = GR(r)GT(t).

Corollary 1 Given an IND channel with G(r, t) = GR(r)GT(t),

1
nR

I(SNR)
a.s.→ β E

[
log

(
1 + SNRGT(T)P(T)Γ̂(SNR)

)]
+ E

[
log

(
1 + SNRGR(R)Υ̂(SNR)

)]

−β SNR Γ̂(SNR)Υ̂(SNR) log2 e (70)

where

Γ̂(SNR) =
1

β
E

[
GR(R)

1 + SNRGR(R)Υ̂(SNR)

]
(71)

Υ̂(SNR) = E

[
GT(T)P(T)

1 + SNRGT(T)P(T)Γ̂(SNR)

]
(72)

Proof: See Appendix H.

In this case, the SINR at the output of a linear MMSE receiver experienced by the signal
transmitted from the jth transmit antenna corresponds with the function

SNR Γ̂(SNR)GT(t)P(t) j
nR
≤ t < j+1

nR
(73)

whereas the MMSE corresponds with

1

1 + SNR Γ̂(SNR)GT(t)P(t)

j
nR
≤ t < j+1

nR
(74)
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Besides the outer product of two vectors, other relevant structures for G that are created
by many arrays of practical interest are those of regular matrices (cf. Definitions 4–5).

If G is row-regular, then Theorem 3 reduces to [33, Theorem 4.1] which can be obtained
directly through the Silverstein-Bai framework.

As stated by Theorem 2, for any column-regular G the asymptotic capacity-achieving
power allocation is uniform and the capacity emerges in a familiar explicit form.

Theorem 4 Consider an IND channel whose gain matrix G is column-regular and asymptot-
ically mean row-regular. The asymptotic capacity coincides with that of a channel with unit-
variance independent entries, given by [3] 7

1
nR

C
a.s.→ log2

(
1 + SNR − 1

4
F(β, SNR

β
)
)

+β log2

(
1 + SNR

β
− 1

4
F(β, SNR

β
)
)
− β

log2 e

4 SNR
F(β, SNR

β
) (75)

with the auxiliary function

F(x, y) ,
(√

1 + y(1 +
√

x)2 −
√

1 + y(1−√x)2

)2

. (76)

Proof: See Appendix F.

Theorem 4 states that the asymptotic capacity expressions derived for IID channels [3, 4]
through the Marc̆enko-Pastur law are, in fact, valid for any IND channel whose gain
matrix G is column-regular and asymptotically mean row-regular. Moreover, the stricter
column-regular condition is required solely in order to ensure that the capacity-achieving
input of the IND channel is isotropic. By specifying a uniform power allocation, we can
relax this condition as follows.

Theorem 5 Consider a channel with IND entries whose gain matrix G is asymptotically mean
doubly-regular. The asymptotic spectral efficiency achieved by an isotropic input coincides with
that of a channel with unit-variance independent entries given in (75).

Proof: See Appendix F.

In order to compare regular channels to which Theorems 4 and 5 apply, it is important
to remember that, while the function that relates their capacity/spectral efficiency with

7Eq. (75) was originally derived for IID matrices in the context of CDMA [3]. As presented here, it has
been modified to conform with the SNR defined in this paper.
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the receive signal-to-noise ratio may be common, the corresponding transmit signal-to-
noise ratios may differ if the average channel gain g in (4) is not the same. Any difference
in average channel gain translates directly into a dB-shift in the curve relating capac-
ity/spectral efficiency and transmit power, even while I(SNR) may remain unchanged. A
more detailed discussion of this issue can be found in Section VII.

Example 1 Consider a transmitter and a receiver each with the antennas evenly split between two
orthogonal polarizations. Denoting by X the cross-polar discrimination (gain between crosspolar
antennas relative to gain between copolar antennas), G equals

G =
2

1 + X




1 X 1 X · · · X
X 1 X 1 · · · 1
1 X 1 X · · · X
X 1 X 1 · · · 1
...

...
...

... . . . ...
X 1 X 1 · · · 1




(77)

which is column- and row-regular. From Theorem 4, in the absence of antenna correlation its
asymptotic C(SNR) function equals that of an IID channel where all the antennas are copolar.
However, the amount of transmit power required the attain a certain capacity differs by 2

1+X |dB

from the amount it would take in an IID channel.

A.3 Performance Measures: L∞

The study of Eb

N0 min
, S0 and S∞ for IND channels is deferred to Section VI, where exact ex-

pressions for arbitrary numbers of antennas are derived. In contrast, the characterization
of L∞ is asymptotic in the number of antennas and thus we elaborate it here. Recall from
Section IV that, for SNR →∞, P?(t, SNR) becomes strictly positive for t on the subset ST de-
fined in (54). Furthermore, for β′ ≤ 1 it becomes uniform on that subset. For β′ > 1, this
may not be the case and we use P?

∞(t) to denote the limiting capacity-achieving power
allocation, i.e.,

P?
∞(t) , lim

SNR→∞
P?(t, SNR) (78)

Proposition 2 Let H̃ be an IND channel with asymptotic gain profile G(r, t) whose marginals
are GR(r) and GT(t). As nR →∞,

L∞ a.s.→





−E
[
log2

(
Pr{T∈ST}

e
E

[
G(R′,T′)P?∞(T′)

1+α(T′) |R′
])]

− β′E [log2 (1 + α(T
′))] β′ > 1

−E
[
log2

G(R′,T′)
e

]
β′ = 1

−E
[
log2

Γ∞(T′)
e

]
− 1

β′E
[
log2

(
1 + E

[
G(R′,T′)
Γ∞(T′) |R′

])]
β′ < 1
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with R′ and T′ the restrictions of R and T to the subsets SR and ST, respectively. For β′ > 1, the
function α(t) , lim

SNR→∞
SNR Γ(t, SNR) is the solution of

α(t) =
1

β′
E


 G(R′, t)P?

∞(t)

E
[
G(R′,T′)P?∞(T′)

1+α(T′) |R′
]

 (79)

whereas, for β′ < 1, Γ∞(t) , lim
SNR→∞

Γ(t, SNR) is the solution of

E


 1

1 + E
[
G(R′,T′)
Γ∞(T′) |R′

]

 = 1− β′. (80)

Additionally, for β′ > 1

P?
∞(t) =

α(t)
1+α(t)

E
[

α(T)
1+α(T)

] (81)

Proof: See Appendix I.

Notice that α(t) indicates, for j
nR

≤ t < j+1
nR

, the limiting SINR, approached as the SNR

grows large, of the signal radiated from the jth transmit antenna. In turn, Γ∞(t) indicates
the limiting ratio between the SINR and the SNR. Except outside ST(t), where both α(t)
and Γ∞(t) are zero, the behavior of these two quantities depends very strongly on β′.

• If β′ ≤ 1, then α(t) is not finite and thus the SINR of every signal reaching the receiver
grows without bound for SNR → ∞. This simply reflects the ability of a linear MMSE
receiver to become a perfect decorrelator whenever the number of dimensions exceeds
the number of interfering signals and the noise is negligible. At the same time, Γ∞(t)
is nonzero and thus the SINR growth is linear with the SNR.

• If β′ > 1, then α(t) is bounded and thus the SINR saturates for SNR → ∞. Perfect
decorrelation is no longer possible once the number of signals overwhelms the dimen-
sionality of the receiver. Naturally then, Γ∞(t) = 0.

With a uniform power allocation over all transmit antennas, L∞ is further increased, for
β′ ≤ 1, by − log2 (Pr{T ∈ ST}), reflecting the power wasted on transmit antennas whose
signals do not reach the receiver. For β′ > 1, L∞ is also bound to increase if the power
allocation is uniform over all transmit antennas, in this case by an amount that depends
on P∞(·) but that is no smaller than − log2 (Pr{T ∈ ST}).
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Corollary 2 If G(r, t) = GR(r)GT(t), Proposition 2 particularizes to

L∞ a.s.→





−E
[
log2

(
Pr{T∈ST}

e
GR(R′)

α̂ β′

)]
− β′E [log2 (1 + α̂GT(T′)P?

∞(T
′))] β′ > 1

−E
[
log2

GT(T′)GR(R′)
e

]
β′ = 1

−E
[
log2

Γ̂∞ GT(T′)
e

]
− 1

β′E
[
log2

(
1 + GR(R′)

Γ̂∞

)]
β′ < 1

with α̂ and Γ̂∞ solutions, respectively, to

E

[
1

1 + α̂GT(T′)P?∞(T′)

]
= 1− 1

β′
(82)

E

[
1

1 + GR(R′)
Γ̂∞

]
= 1− β′. (83)

For β′ = 1, this result had been derived in [10]. If GR(r) = 1 and we set P∞(t) = 1, the
expressions for L∞ further simplify to those reported in [33]. Finally, if G(r, t) is mean
doubly-regular and P∞(t) = 1, then α̂ and Γ̂∞ can be solved for and the high-SNR power
offset specializes to

L∞◦ a.s.→





(β − 1) log2
β−1

β
+ log2 e β > 1

log2 e β = 1

1−β
β

log2(1− β) + log2(βe) β < 1

(84)

previously derived for IID channels [31] and hereby generalized to mean doubly-regular
IND channels. For β′ ≤ 1, the expressions in (84) also serve as a lower bound, i.e., for any
IND channel with β′ ≤ 1

L∞ ≥ L∞◦ . (85)

B Asymptotic Analysis: UIU Channels

Through the unitary equivalence between IND and UIU channels, the asymptotic ex-
pressions for mutual information, capacity and L∞ derived thus far for the former are
immediately applicable to the latter. Precisely, any channel with correlation RH that falls
within the UIU framework and has bounded eigenvalues is unitarily equivalent to an
IND channel H̃ with variances (G)i,j = λi,j(RH).

For Rayleigh-faded channels with separable correlations, cf. (3), the unitary relationship
can be further elaborated on. Specifically, since for the equivalent IND channel (G)i,j =
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λi(ΘR)λj(ΘT), the asymptotic gain profile of H̃ then factors as G(r, t) = GR(r)GT(t) and
Corollary 1 yields

1
nR

I(SNR)
a.s.→ β E

[
log2(1 + SNR ΛTΓ̂(SNR))

]
+ E

[
log2(1 + SNR ΛRΥ̂(SNR))

]

−β SNR Γ̂(SNR)Υ̂(SNR) log2 e (86)

with expectation over ΛR and ΛT distributed according to the asymptotic eigenvalue dis-
tributions of ΘR and Θ

1/2
T ΦΘ

1/2
T , respectively, and with

Γ̂(SNR) =
1

β
E

[
ΛR

1 + ΛR SNR Υ̂(SNR)

]
(87)

Υ̂(SNR) = E

[
ΛT

1 + ΛTSNR Γ̂(SNR)

]
(88)

The capacity is given by the right-hand side of (86) when the eigenvectors of Φ equal
those of ΘT while the power allocation equals P?, whose diagonal entries satisfy (39) and
(40).

Corollary 2 can be similarly applied to UIU channels taking into account that β′ indicates
the ratio between the number of nonzero eigenvalues in ΘT and ΘR.

It must be noted that, for Rayleigh-faded channels with separable correlations, some
asymptotic characterizations are already available in the literature [10, 11, 14].8 As it turns
out, if ΘR and ΘT are Toeplitz matrices, then (86) holds for any channel described by (3)
even when the entries of Hw are IID but their fading is not Rayleigh [38, Theorem 2.44].

VI Arbitrary Numbers of Antennas

Having analyzed the large-dimensional regime in Section V, we now turn our attention
to the realm of arbitrary numbers of antennas, for which we derive exact expressions for
Eb

N0 min
, S0 and S∞. In addition, this section also illustrates the power of the asymptotic

expressions in approximating their nonasymptotic counterparts even when nT and nR are
small.

8The analysis in [10] is limited to square channels (β′ = 1). Arbitrary β′ is considered in [11], which
relies on the (not fully rigorized yet) replica method of statistical mechanics. In [14], an explicit expression
is given for a specifically crafted form of one-sided correlation (either transmit or receive only).
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A Arbitrary Numbers of Antennas: IND Channels

Invoking Theorem 3, the capacity of an IND channel is approximated by

C(SNR) ≈
nT∑
j=1

log2

(
1 + SNR Γj

eΓjΥj

)
+

nR∑
i=1

log2

(
1 + 1

nT

∑nT

j=1 p?
j (G)i,jΥj

)
(89)

where

Γj =

nR∑
i=1

p?
j (G)i,j

nT +
∑nT

j=1 p?
j (G)i,jΥj

(90)

Υj =
SNR

1 + SNR Γj

(91)

with the powers p?
j satisfying (39) and (40). The spectral efficiency with uniform power

allocation is also approximated by (89) by simply setting pj = 1 for every j. The SINR
exhibited by the signal radiated from the jth transmit antenna at the output of a linear
MMSE receiver is approximated by SNR Γj while the corresponding MMSE is approxi-
mated by Υj/SNR.

For the results that follow, we recall that gR and gT are the column- and row-wise averages
of the gain matrix G while n′R and n′T are the number of nonzero entries in gR and gT,
respectively.

Proposition 3 The low-SNR performance measures of an IND channel are

Eb

N0 min

=
loge 2

g nR max(gT)
(92)

S0 =
2n2

Rm2 max2(gT)

n2
Rm max2(gT) + ‖∑

j∈M(G)j‖2
(93)

where max(gT) denotes the largest entry of gT, M is the set of indices of the entries attaining it
and m = |M|.
Proof: Apply [47, Theorems 1 and 13].

It can be verified that
loge 2

g nTnR

≤ Eb

N0 min

≤ loge 2

g nR

(94)

with the upper bound corresponding to an IID channel [47]. On the other hand,

1 ≤ S0 ≤ 2 nRm

nR + m
≤ 2 nTnR

nT + nR

(95)
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where the rightmost expression corresponds to an IID channel [47].

If, in lieu of the optimum power allocation in Proposition 3, the power allocation is uni-
form, then

Eb

N0 min

=
loge 2

g nR

(96)

S0 =
2n2

Tn2
R

n2
T‖gR‖2 + n2

R‖gT‖2
. (97)

Although S0 is lower on an IND channel than on an IID channel, Eb

N0 min
is also lower and

thus the low-SNR capacity of an IND channel exceeds that of an IID channel.

Proposition 4 The high-SNR slope of an IND channel is

S∞ = min(n′T, n′R). (98)

Proof: See Appendix G.

The high-SNR slope in (98) can be attained with a uniform power allocation. Clearly,
1 ≤ S∞ ≤ min(nT, nR) with the upper bound corresponding to an IID channel. Since,
in most practical instances, all antennas contribute positive power, this upper bound is
usually achieved bolstering the importance of L∞ in the assessment of the effects of an-
tenna correlation at high SNR.

Denote by G′ and P′ the submatrices obtained by excluding from G and P the rows and
columns that are identically zero. In the high-SNR limit, the capacity-achieving power
allocation is uniform for n′T ≤ n′R while, for n′T > n′R, we denote it by P′? = diag{p′?j }
whose entries satisfy (40). With that, L∞ in 3-dB units is, from Proposition 2,

L∞ ≈





− 1
n′R

n′R∑
i=1

log2

(
1

nT e

∑n′T
j=1

p′?j (G′)i,j

1+αj

)
− 1

n′R

n′T∑
j=1

log2 (1 + αj) n′T > n′R

− 1
n′Tn′R

n′T∑
j=1

n′R∑
i=1

log2
(G′)i,j

e
n′T = n′R

− 1
n′T

n′T∑
j=1

log2
Γj

e
− 1

n′T

n′R∑
i=1

log2

(
1 + 1

n′T

∑n′T
j=1

(G′)i,j

Γj

)
n′T < n′R

with αj and Γj solutions to

αj =

n′R∑
i=1

p′?j (G′)i,j∑n′T
`=1 p′?` (G′)i,`/(1 + α`)

(99)
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and
n′R∑
i=1

1

n′T +
∑n′T

j=1(G
′)i,j/Γj

=
n′R
n′T
− 1 (100)

respectively.

It is interesting to note that the low-SNR performance measures depend on nR and nT while
the high-SNR measures depend on n′R and n′T. This is a consequence of the fact that the
former are connected to the energy in the channel matrix, which from (2) is determined
by nR and nT, whereas the latter relate essentially to the number of active degrees of
freedom, which from Definition 6 is given by n′R and n′T.

Example 2 Consider nT = 3 and nR = 2 with

G =

[
0.4 3.6 0.5
0.3 1 0.2

]
(101)

and with each (i,j)th entry of H̃ having independent real and imaginary parts distributed uni-
formly on the interval [

−
√

1.5 (G)i,j,
√

1.5 (G)i,j

]
.

The capacity-achieving power allocation is tabled within Fig. 1 along with plots of the capacity and
of the spectral efficiency with uniform power allocation, both provided by (89), (90) and (91). The
fixed-point equations in (90) and (91) are easily solved by initializing Γj = Υj = 1 for j = 1, 2, 3
and iterating between them. Also shown in Fig. 1 are the results of corresponding Montecarlo
simulations as well as the analytical high-SNR expansion of the spectral efficiency. As function of
Eb

N0
, the capacity and spectral efficiency with uniform power allocation are portrayed in Fig. 2 along

with the analytical low-SNR expansion.

The high-SNR slope in Example 2 is S∞ = 2 bits/s/Hz/(3 dB). From our asymptotic ex-
pression, L∞ ≈ 3.6 dB while the exact value obtained numerically is L∞ = 3.5 dB.

B Arbitrary Numbers of Antennas: UIU Channels

The nonasymptotic expressions for IND channels can be immediately applied to UIU
channels.

For Rayleigh-faded channels with separable correlations, we can further specialize the
expressions. From (86), the capacity becomes

C(SNR) ≈
nT∑
j=1

log2

(
1 + SNR p?

jλj(ΘT) Γ̂

eSNR ΓΥ

)
+

nR∑
i=1

log2

(
1 + SNR λi(ΘR) Υ̂

)
(102)
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Figure 1: C(SNR) with nR=2 and nT=3 for the gain matrix G on display. Also shown is
the spectral efficiency with uniform power allocation. Solid lines indicate the asymp-
totic approximation in (89), circles indicate simulation (fading having independent real
and imaginary parts uniformly distributed around zero), dashed line indicates high-SNR

expansion.
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with the powers p?
j satisfying (39) and (40) while

Γ̂ =
1

nT

nR∑
i=1

λi(ΘR)

1 + SNR λi(ΘR) Υ̂
(103)

Υ̂ =
1

nT

nT∑
j=1

p?
jλj(ΘT)

1 + SNR p?
jλj(ΘT)Γ̂

. (104)

The low-SNR performance measures are
Eb

N0 min

=
loge 2

g Tr{ΘR}λmax(ΘT)
(105)

S0 =
2 Tr2{ΘR}

Tr2{ΘR}/m + Tr{Θ2
R}

(106)

where λmax(ΘT) denotes the largest eigenvalue of ΘT and m its multiplicity. Notably,
Eb

N0 min
depends mainly on ΘT whereas S0 depends mainly on ΘR.

For a uniform power allocation, the low-SNR performance measures of a Rayleigh-faded
channel with separable correlations are given in [13]. Recall that such an input achieves
capacity whenever there is correlation only at the receiver.

The high-SNR slope is S∞ = min(n′T, n′R) where n′R and n′T are the number of nonzero
eigenvalues of ΘR and ΘT, respectively. Thus, when such matrices are strictly positive
definite, the linear scaling with the number of antennas of the first-order term in the high-
SNR expansion of the capacity vs SNR|dB is retained. This observation, first made in [10] for
large numbers of antennas and shown here to hold for arbitrary nT and nR, does not
preclude a possibly large penalty in the zero-order term embodied by the power offset.
Closed-form expressions for the high-SNR power offset of Rayleigh-faded channels with
separable correlations and arbitrary numbers of antennas can be found in [34, 57].

In general, computing C(SNR) requires finding Γ̂ and Υ̂ by iterating between their ex-
pressions in (103) and (104). In some instances, however, e.g. when either transmitter
or receiver are equipped with a single antenna or with uncorrelated antennas, Γ̂ and Υ̂
can be found directly without the need to iterate. For example, if λi(ΘR)=1 ∀i, then the
expressions in (103) and (104) can be rearranged as

Γ̂ =
nR

nT

− SNR Γ̂Υ̂ (107)

SNR Γ̂Υ̂ = 1− 1

nT

nT∑
j=1

1

1 + SNR p?
jλj(ΘT)Γ̂

. (108)

Plugging in a value for SNR Γ̂ on (108) provides the corresponding SNR Γ̂Υ̂, from which
(107) yields Γ̂. Both SNR and Υ̂ can be then obtained and hence C(SNR), as illustrated by
the next example.
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Example 3 Consider a 4-antenna ULA transmit array and a receiver with 2 uncorrelated an-
tennas. Further consider, at the transmitter, a broadside (truncated) Gaussian power azimuth
spectrum with a 2◦ root-mean-square spread. With these conditions, typical of a mobile system
deployed in a suburban area, the correlation between transmit antennas can be approximated by
[58]

(ΘT)i,j ≈ e−0.05 d2(i−j)2 (109)

where d is the antenna spacing (wavelengths). The approximation of the capacity provided by
(102), (107) and (108) is plotted in Fig. 3, for Rayleigh fading and various values of d, alongside
corresponding Montecarlo simulations as well as low-SNR expansions. Also shown, besides the
capacity, is the spectral efficiency with an isotropic input.

VII Conclusion: Impact of Correlation

Throughout this paper, we have presented analytical characterizations of the capacity and
spectral efficiency (achieved by an isotropic input) of correlated multiantenna channels.
Although with some emphasis on the prominent separable correlation model, our analy-
sis has embraced the more general UIU model. The distinctive feature of a UIU channel
is an IND matrix, which may surface in contexts other than the single-user multiantenna
problem.

In the remainder of this section, we put these characterizations to use in order to derive
insight on how multiantenna links are impacted by correlation.

A Spectral Efficiency with Isotropic Input

When the input is isotropic, antenna correlation can only diminish the spectral efficiency.
At low SNR, the Eb

N0 min
is unaffected and thus the reduction in spectral efficiency takes

the form of a bandwidth penalty directly quantified by the decline in the slope S0 [13].
In the high SNR region, on the other hand, the slope S∞ is only sensitive to the number
of nonnegligible eigenvalues and thus it is not altered by most correlation structures of
practical interest. The penalty therein is reflected as a power offset increase determined,
in 3-dB units, roughly by the average of the logarithm of the eigenvalues of the channel
correlation function.
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Figure 3: C( Eb

N0
) and spectral efficiency with an isotropic input, parameterized by d. The

transmitter is a 4-antenna ULA with antenna spacing d (wavelengths) while the receiver
has 2 uncorrelated antennas. The power angular spectrum at the transmitter is Gaussian
(broadside) with 2◦ spread. Solid lines indicate the asymptotic approximation in (89),
circles indicate simulation (Rayleigh fading), dashed lines indicate low-SNR expansion.
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B Capacity

For the capacity (i.e., with optimized inputs), the picture is more involved. If we contrast
a correlated UIU channel H against an IID channel normalized to the same average gain,
we identify two distinct behaviors:

• If isotropic inputs achieve the capacity of the UIU channel, then it holds that correlation
is detrimental at any SNR. This is the case if correlation and variance disparities arise
between entries in different rows of H, but there is uniformity across columns.

• If the capacity-achieving input for the UIU channel is nonisotropic (generally the case
when correlation and variance disparities exist between entries in different columns of
H), the capacity curves may intersect with correlation being deleterious above a critical
SNR but beneficial below it. The advantage at low SNR is a mere reflection of the findings
in [47], where it is shown that correlation can only decrease Eb

N0 min
.

For separable correlations specifically, we can draw the following lessons:

• Receive correlation reduces the effective dimensionality of the receiver without in-
creasing the captured power and thus it is always detrimental.

• Transmit correlation reduces the effective dimensionality of the transmitter, but it also
enables focusing power. The net effect is an advantage at low SNR where, as evidenced
in Fig. 3, Eb

N0 min
experiences a reduction given precisely by the largest eigenvalue of ΘT.

At high SNR, an advantage can also be realized if nT > nR.

C Correlation and Channel Gain

The foregoing assessments of the impact of correlation have been made on the basis of a
fixed received signal-to-noise ratio, i.e., by contrasting the spectral efficiency and capac-
ity of channel matrices with a common normalization. In doing so, we have intentionally
decoupled our study from a second aspect that arises in the comparison of different prop-
agation environments and different antenna arrays: besides the correlation, the average
gain g in (4) may also differ. A complete comparison of different channels must neces-
sarily account for both these aspects and should thus be conducted at a fixed transmitted
signal-to-noise ratio, i.e., with a fixed transmitted power. The study of the average gain,
however, has to do with radio propagation and channel modeling and is thus beyond the
scope of this paper. For more on this theme, the interested reader is referred to [59, 60].
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Appendices

A Proof of Theorem 2

Let H̃ and H̃Ray be two zero-mean column-regular IND channel having the same gain
matrix G. Further let the entries of H̃Ray be Rayleigh-faded while the entries of H̃ have
arbitrary marginal distributions.

Denote by IRay(SNR) the spectral efficiency of H̃Ray with an arbitrary input covariance Φ
and by CR(SNR) the corresponding capacity, which is achieved by an isotropic input for
any value of nT and nR [49]. Clearly,

1

nR

CRay(SNR) ≥ 1

nR

IRay(SNR). (110)

Denote by I(SNR) the spectral efficiency of H̃ with the same input covariance Φ above and
by Io(SNR) the spectral efficiency of H̃ with an isotropic input. Since, with a given input,
the asymptotic mutual information of an IND channel does not depend on the marginal
distribution of its entries,

lim
nR→∞

1
nR

Io(SNR) = lim
nR→∞

1
nR

CRay(SNR) (111)

lim
nR→∞

1
nR

I(SNR) = lim
nR→∞

1
nR

IRay(SNR) (112)

from which, invoking (110) in the limit n′R →∞, it follows that

lim
nR→∞

1
nR

Io(SNR) ≥ lim
nR→∞

1
nR

I(SNR). (113)

Thus, an isotropic input is asymptotically capacity-achieving on H̃.

B Proof of Lemma 1

We shall make extensive use of the following result by Girko [39, Corollary 10.1.2], which
we quote couched in the notation of this paper.
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Theorem 6 Let H̃ be a nR×nT matrix with independent zero-mean arbitrarily distributed com-
plex random entries whose uniformly bounded variances are (G)i,j=E[|(H̃)i,j|2]. Denote β=nT/nR.
Assume that the asymptotic gain profile of H̃ as defined in (45) and (49) exists and is denoted by
G(r, t) with (r, t) ∈ [0, 1] × [0, β] and that the asymptotic power profile of P defined in (48) and
(52) also exists and is denoted by P(t) with t ∈ [0, β]. Then, the asymptotic empirical eigen-
value distribution of 1

nT
H̃PH̃† converges almost surely to a nonrandom limit F (·) whose Stieltjes

transform is

S(z) = lim
nR→∞

E

[(
I + z

nT
H̃PH̃†

)−1
]

(114)

= E[B(R, z)] (115)

with B(·, ·) solution to the fixed-point equation

B(r, z) =
1

1 + zβE

[ P(T)G(r, T)

β + zE [B(R, z)P(T)G(R, T)|T]

] (116)

where the expectations are over R and T, independent and respectively uniform in (0, 1] and (0, β].
The solution to (116) exists and is unique in the class of functions B(r, z) that are analytical on z
and continuous on r ∈ [0, 1].

Define
Wj , SNR

nT

∑

6̀=j

p` h̃`h̃
†
`. (117)

Recalling j
nR
≤t< j+1

nR
and using [43, Proposition 2.7],

E




∣∣∣∣∣Γ
(nR)(t, SNR)− pj

nT

nR∑
i=1

(G)i,j (I + Wj)
−1
i,i

∣∣∣∣∣

2

 ≤ K

n2
R

(118)

with K a constant.

Since (G)i,j ≤ b, ∀i, j and for some bound b<∞, then

1

nT

nR∑
i=1

(G)i,j (I + Wj)
−1
i,i =

1

nT

nR∑
i=1

(G)i,j

1−w†
j,i (I + Wj,i)

−1 wj,i + SNR
nT

riPr†i
(119)

where ri is the ith row of H̃ while wj,i is the ith column of Wj excluding the ith entry and
Wj,i is the (nR − 1)×(nR − 1) submatrix obtained by eliminating from Wj the ith column
and the ith row. Further defining

D(nR)
i (SNR) ,

(
I + SNR

nT

∑

` 6=j

p`h̃`h̃
†
`

)−1

i,i

(120)
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and

$
(nR)
i , SNR

nT

nT∑
j=1

pj (G)i,j

1 + SNR
nT

pj

∑nR

`=1(G)`,jD(nR)
` (SNR)

(121)

we can write

1
nT

nR∑
i=1

(G)i,j D(nR)
i (SNR) = 1

nT

nR∑
i=1

(G)i,j

1 + $
(nR)
i + ε

(nR)
i

(122)

= 1
nT

nR∑
i=1

(G)i,j

1 + $
(nR)
i

− δ
(nR)
i (123)

with
ε
(nR)
i , −w†

j,i (I + Wj,i)
−1 wj,i + SNR

nT
riPr†i −$

(nR)
i (124)

and

δ
(nR)
i , 1

nT

nR∑
i=1

ε
(nR)
i (G)i,j

(1 + $
(nR)
i )(1 + $

(nR)
i + ε

(nR)
i )

. (125)

Since the entries of G are uniformly bounded by b with respect to i, j and nT, invoking
Theorem 6 we have that a.s.

|δ(nR)
i | ≤

∣∣∣∣∣
b

nT

nR∑
i=1

ε
(nR)
i

(1 + $
(nR)
i )(1 + $

(nR)
i + ε

(nR)
i )

∣∣∣∣∣ (126)

= o(1) (127)

Consequently,

lim
nR→∞

1
nT

nR∑

i=1

(G)i,j D(nR)
i (SNR) = lim

nR→∞
1

nT

nR∑

i=1

(G)i,j

1 + SNR
nT

∑nT
j=1

pj(G)i,j

1+SNR
nT

pj
∑nR

`=1(G)`,j D(nR)

` (SNR)

(128)

Denoting

Γ(t, SNR) = lim
nR→∞

pj

nT

nR∑
i=1

(G)i,jD(nR)
i (SNR) (129)

we obtain (58) from (128). Furthermore, using the first Borel-Cantelli Lemma [62], the
sequence of functions Γ(nR)(·, SNR) converges to

lim
nR→∞

Γ(nR)(t, SNR)
a.s.
= Γ(t, SNR) (130)

with Γ(·, SNR) satisfying (58).
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C Proof of Theorem 3

Defining

I(SNR) , lim
nR→∞

1

nR

I(SNR), (131)

its derivative with respect to SNR in (42) is

İ(SNR) =
log2 e

SNR

(
1−

∫
1

1 + SNR ξ
dF (ξ)

)
(132)

=
log2 e

SNR
(1− E [B(R, SNR)]) (133)

where (133) follows from Theorem 6 and B(r, SNR) satisfies (63). From (64),

SNR Γ(T, SNR) = P(T)SNR
β

E[G(R, T)B(R, SNR)|T] (134)

is the SINR at the output of a linear MMSE receiver and thus β E [log2(1 + SNR Γ(T, SNR))]
is the mutual information achieved by a linear MMSE receiver. Notice also that

E

[
d

d SNR
loge(1 + SNR Γ(T, SNR))

]
= E

[
SNR E[P(T)G(R, T)Ḃ(R, SNR)|T]

β + SNR E[P(T)G(R, T)B(R, SNR)|T]

]

+E

[
E[P(T)G(R, T)B(R, SNR)|T]

β + SNR E[P(T)G(R, T)B(R, SNR)|T]

]

(135)

which, in conjunction with (133) and (134), yields

İ(SNR)− β E
[

d
dSNR log2(1 + SNR Γ(T, SNR))

]
=

−β

loge 2
E

[
SNR E[P(T)G(R, T)Ḃ(R, SNR)|T]

β + SNR E[P(T)G(R, T)B(R, SNR)|T]

]

= −β E
[
Γ̇(T, SNR) Υ(T, SNR)

]
log2 e (136)

where we have further used

Υ(t, SNR) =
β SNR

β + SNR E[B(R, SNR)P(t)G(R, t)]
. (137)
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Note that
d

dSNR
E [Γ(T, SNR)Υ(T, SNR)] = E

[
Γ(T, SNR)Υ̇(T, SNR)

]
+ E

[
Γ̇(T, SNR)Υ(T, SNR)

]

=
1

β
E

[
Υ̇(T, SNR)P(T)G(R, T)

1 + E[P(T)G(R, T)Υ(T, SNR)|R]

]
+ E

[
Γ̇(T, SNR)Υ(T, SNR)

]

=
1

β
E


 E

[
Υ̇(T, SNR)P(T)G(R, T)|R

]

1 + E[P(T)G(R, T)Υ(T, SNR)|R]


 + E

[
Γ̇(T, SNR)Υ(T, SNR)

]

=
1

β

d

dSNR
E [loge(1 + E[P(T)G(R, T)Υ(T, SNR)|R])]

+E
[
Γ̇(T, SNR)Υ(T, SNR)

]
(138)

from which, integrating over SNR and using I(0) = 0, the claimed result is found.

In addition,
−βE [Γ(T, SNR) Υ(T, SNR)] = E[B(R, SNR)]− 1 (139)

and also, using (63) and (137),

E [log2(1 + E[G(R, T)P(T)Υ(T, SNR)|R])] = −E [log2 B(R, SNR)] . (140)

Using (137), (139) and (140), the alternative expression in (69) is easily proved.

D Proof of Conditions (65) and (66)

Although (39) and (40) are formulated on the basis of expected mean-square errors, the
expectations become asymptotically immaterial as the mean-square errors converge a.s.
to nonrandom limits. Equations (66) and (65) are immediately obtained simply by replac-
ing the corresponding quantities in (39) and (40) with their asymptotic limits. The subset
in (67) is elaborated in the remainder of this appendix.

Recalling that j
nR
≤t< j+1

nR
and using [43, Proposition 2.7],

E




∣∣∣∣∣
SNR
nT

h̃†j (I + Wj)
−1 h̃j − SNR

nT

nR∑
i=1

(G)i,j (I + Wj)
−1
i,i

∣∣∣∣∣

2

 ≤ K

n2
R

(141)

with Wj defined in (117) and with K a constant. (I + Wj)
−1. Following the same steps of

Appendix B and using (141) and (128), we conclude that

lim
nR→∞

γj
a.s.
=

SNR

β
E [G(R, t)B(R, SNR)] . (142)
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E Proof of Proposition 1

Letting P(t)=1 and averaging both sides of (63), we obtain

1− E[B(R, SNR)]

SNR
= β E

[
E[B(R, SNR)G(R, T)|T]

β + SNR E[B(R, SNR)G(R, T)|T]

]
(143)

which, recalling (64), can be plugged into (133) to yield

İ(SNR) = β E

[
Γ(T, SNR)

1 + SNR Γ(T, SNR)

]
log2 e. (144)

Defining η(SNR) , E[Γ(T, SNR)] and using Jensen’s inequality,

İ(SNR) ≤ β
η(SNR)

1 + SNR η(SNR)
log2 e. (145)

If η(SNR) satisfies

β η(SNR) =
1

1 + SNR
1+SNR η(SNR)

(146)

then the right-hand side of (145) represents the derivative of the asymptotic capacity per
antenna of an IID channel. Thus, İ(SNR) is upper-bounded at every SNR by the value it
takes on an IID channel and, consequently, so is I(SNR).

This upper bound is proved in [63] for arbitrary numbers of antennas, albeit only for
Rayleigh-faded channels with separable correlations.

F Proof of Theorems 4 and 5

We will start by proving Theorem 5, from which Theorem 4 then follows.

In order to prove Theorem 5, we need to show that, when G is asymptotically mean
doubly-regular, the asymptotic empirical eigenvalue distribution of 1

nT
H̃H̃† coincides

with that of a matrix having unit-variance independent entries. This equivalence has
already been proved for Hermitian band matrices in [61, Corollary 3.4]. Inspired by this
result, and making once again use of Theorem 6, we extend this equivalence to non-
Hermitian matrices.

When H̃ has independent arbitrarily distributed unit-variance entries, the asymptotic em-
pirical eigenvalue distribution of 1

nT
H̃H̃† converges a.s. to the Marc̆enko-Pastur law with

parameter 1/β whose density function is [46, 38]

f1/β(ξ) = (1− β)+ δ(ξ) + β

√
[ξ − a]+[b− ξ]+

2πξ
(147)
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where [z]+ = max (0, z) and

a = (1− 1√
β

)2 (148)

b = (1 +
1√
β

)2. (149)

The Stieltjes transform of (147), denoted Bw(·), is solution to the fixed-point equation

Bw(z) =
1

1 +
zβ

β + zBw(z)

. (150)

For H̃ having IND arbitrarily distributed entries whose variances are normalized as per
(2), the asymptotic empirical eigenvalue distribution of 1

nT
H̃H̃† converges a.s. to a non-

random limit whose Stieltjes transform satisfies (116). The solution to (116) exists and is
unique in the class of functions B(r, z) that are analytical on z and continuous on r ∈ [0, 1].
In order to prove that, for G asymptotically mean doubly-regular, the asymptotic empir-
ical eigenvalue distribution of 1

nT
H̃H̃† converges a.s. to (147), we simply need to verify

that under such conditions (116) reduces to (150) and is thus satisfied by Bw(z).

To this end, recall that if G is asymptotically mean doubly-regular and normalized as per
(2),

lim
nR→∞

1
nR

nR∑
i=1

(G)i,j = lim
nT→∞

1
nT

nT∑
j=1

(G)i,j (151)

= E [G(R, t)] (152)
= E [G(r, T)] (153)
= 1. (154)

Plugging Bw(z) in (116),

B(r, z) =
1

1 + zβE

[ G(r, T)

β + zBw(z)E [G(R, T)|T]

] (155)

=
1

1 + zβE

[ G(r, T)

β + zBw(z)

] (156)

=
1

1 + zβ
E [G(r, T)]

β + zBw(z)

(157)

=
1

1 +
zβ

β + zBw(z)

(158)
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which is exactly (150). Thus, the asymptotic empirical eigenvalue distribution of 1
nT

H̃H̃†

converges a.s. to (147). Integration over this distribution via (42) with a uniform power
allocation yields the expression in (75) [3, 4].

For those channels for which the capacity-achieving input is isotropic, (75) gives the
asymptotic capacity. Since a sufficient condition for the optimality of isotropic inputs (cf.
Theorem 2) is that G be column-regular, Theorem 4 is readily obtained by incorporating
this stricter condition to Theorem 5.

G Proof of Proposition 4

The high-SNR slope is [33]

S∞ = lim
SNR→∞

SNR Ċ(SNR)

log2 e
(159)

where

Ċ(SNR) =

nR∑
i=1

E

[
λi(H̃P?H̃†)

nT + SNR λi(H̃P?H̃†)

]
log2 e (160)

with the diagonal entries of P? satisfying (39) and (40). Then,

lim
SNR→∞

SNR Ċ(SNR) = E[rank{H̃P?H̃†}] log2 e. (161)

Since the entries of H̃ are independent, with probability 1 the rows and columns of H̃
are linearly independent except for those that are identically zero. Also, recall that for
SNR→∞ nonzero power is allocated to every column of H̃ that is not identically zero (cf.
Section IV) and thus P? does not reduce the number of linearly independent columns.
Altogether then,

E[rank{H̃P?H̃†}] = min(n′T, n′R) (162)

from which S∞ follows.

H Proof of Corollary 1

When G(r, t)=GR(r)GT(t), the expression for Γ(t, SNR) in Theorem 3 becomes

Γ(t, SNR) =
P(t)GT(t)

β
E

[
GR(R)

1 + SNRGR(R) Υ̂(SNR)

]
(163)

= P(t)GT(t) Γ̂(SNR) (164)
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with

Γ̂(SNR) , 1

β
E

[
GR(R)

1 + SNRGR(R)Υ̂(SNR)

]
(165)

and
Υ̂(SNR) , 1

SNR
E[P(T)GT(T)Υ(T, SNR)] (166)

It also follows from these expressions that

E[P(T)G(R, T)Υ(T, SNR)|R] = SNRGR(R) Υ̂(SNR) (167)

Likewise, using the definition of Υ(t, SNR) in Theorem 3 we obtain

Υ̂(SNR) = E

[
P(T)GT(T)

1 + SNRP(T)GT(T)Γ̂(SNR)

]
(168)

as well as

E[Γ(T, SNR) Υ(T, SNR)] = Γ̂(SNR)E[P(T)GT(T)Υ(T, SNR)] (169)
= SNR Γ̂(SNR) Υ̂(SNR) (170)

Plugging (164), (167) and (170) into (68), Corollary 1 is obtained.

I Proof of Proposition 2

Recall the definition of the subsets ST and SR in (53) and (54). If t /∈ ST, then GT(t)=0 and
hence, ∀r ∈ [0, 1], G(r, t)=0. If r /∈ SR then, ∀t ∈ [0, β], G(r, t)=0.

Let us start by studying the behavior of Γ(t, SNR) for SNR→∞, to which end we define
Γ∞(t) , limSNR→∞ Γ(t, SNR). If t /∈ ST, then Γ∞(t)=0. If t ∈ ST, there are two scenarios:

a) Γ∞(t)=0.

b) Γ∞(t)>0. In this case, we apply the law of total probability to (58) and take the limit on
SNR to obtain

Γ∞(t) =
1

β′
E


 G(R, t)P?

∞(t)Pr{T ∈ ST}
1 + E

[
G(R,T)P?∞(T)Pr{T∈ST}

Γ∞(T)
|R, T∈ST

] |R ∈ SR


 (171)
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where we have exploited the strict positiveness of P?
∞(t) on ST and we have also used

(55). We can rearrange (171) into

E




G(R,t)P?∞(t)Pr{T∈ST}
Γ∞(t)

1 + E
[
G(R,T)P?∞(T)Pr{T∈ST}

Γ∞(T)
|R,T∈ST

] |R ∈ SR


 = β′. (172)

and, averaging both sides over T conditioned on T ∈ ST, (172) can be further manipu-
lated into

E


 1

1 + E
[
G(R,T)P?∞(T)Pr{T∈ST}

Γ∞(T)
|R,T∈ST

] |R ∈ SR


 = 1− β′ (173)

Let us evaluate the conditions under which Γ∞(t) assumes zero or nonzero values. Since
Γ∞(t) is nonnegative:

• If β′≥1, (173) does not admit a nonzero solution and thus, necessarily, Γ∞(t)=0.

• If β′<1, (173) does admit a nonzero9 solution for Γ∞(t). Furthermore, in that case we
know that P?

∞(t) is uniform over ST and zero outside. Thus, as function of R′ and T′,
restrictions of R and T to SR and ST respectively, (173) becomes (80) as claimed.

Since, for β′≥1, Γ(t, SNR) vanishes, we need to evaluate the limiting value of SNR Γ(t, SNR),
to which end we define

α(t) , lim
SNR→∞

SNR Γ(t, SNR). (174)

For t /∈ ST, Γ(t, SNR)=0 ∀SNR and, by continuity, α(t)=0. For t ∈ ST and β′<1, Γ∞(t) is
a nonzero solution of (173) and thus α(t) diverges. For t ∈ ST and β′≥1, and under the
hypothesis that 0<α(t)<∞, we can again use (58) to obtain

α(t) =
1

β′
E


 G(R, t)P?

∞(t)

E
[
G(R,T)P?∞(T)

1+α(T)
|R, T ∈ ST

] |R ∈ SR


 (175)

For β′>1, (175) admits a unique nonzero solution. Moreover, as function of T
′ and R

′, it
can be written as in (79).

Having characterized the limiting behavior of Γ(t, SNR) for SNR→∞, we can now utilize it
to calculate L∞, which by definition is

L∞ = lim
SNR→∞

log2 SNR− 1
S∞

C(SNR) (176)

9For β′<1, the solution to (173) can be zero only outside ST, where Γ(t, SNR) is itself zero as in scenario
a).
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with C(SNR)/nR given by (68) and S∞/nR=min(Pr{R ∈ SR}, βPr{T ∈ ST}). For β′>1, the
law of total probability and the fact that α(t)=0 for t /∈ ST yield

L∞ = −β′E [log2(1 + α(T))|T ∈ ST]− E

[
log2

(
E

[G(R, T)P?
∞(T)Pr{T ∈ ST}
1 + α(T)

|R, T ∈ ST

])
|R ∈ SR

]

+β′E
[

α(T)

1 + α(T)
|T ∈ ST

]
log2 e (177)

which, invoking (175) with expectation conditioned on T ∈ ST on both sides, becomes

L∞ = −β′E [log2(1 + α(T))|T ∈ ST]−E

[
log2

(
Pr{T ∈ ST}

e
E

[G(R, T)P?
∞(T)

1 + α(T)
|R, T ∈ ST

])
|R ∈ SR

]

(178)
from which, replacing the conditioned expectations over R and T with expectations over R′

and T′ respectively, the desired expression for β′>1 is found. The corresponding expres-
sions for β′≤1 are found via similar expansions from (176) using Γ∞(t)=0 for t /∈ ST.

Finally, condition (81) is easily found from (66) and the definition of α(t).
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